Package quantile computes approximate quantiles over an unbounded data stream within low memory and CPU bounds. A small amount of accuracy is traded to achieve the above properties. Multiple streams can be merged before calling Query to generate a single set of results. This is meaningful when the streams represent the same type of data. See Merge and Samples. For more detailed information about the algorithm used, see: Effective Computation of Biased Quantiles over Data Streams http://www.cs.rutgers.edu/~muthu/bquant.pdf
package quantile

import (
	
	
)
Sample holds an observed value and meta information for compression. JSON tags have been added for convenience.
type Sample struct {
	Value float64 `json:",string"`
	Width float64 `json:",string"`
	Delta float64 `json:",string"`
}
Samples represents a slice of samples. It implements sort.Interface.
type Samples []Sample

func ( Samples) () int           { return len() }
func ( Samples) (,  int) bool { return [].Value < [].Value }
func ( Samples) (,  int)      { [], [] = [], [] }

type invariant func(s *stream, r float64) float64
NewLowBiased returns an initialized Stream for low-biased quantiles (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but error guarantees can still be given even for the lower ranks of the data distribution. The provided epsilon is a relative error, i.e. the true quantile of a value returned by a query is guaranteed to be within (1±Epsilon)*Quantile. See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error properties.
func ( float64) *Stream {
	 := func( *stream,  float64) float64 {
		return 2 *  * 
	}
	return newStream()
}
NewHighBiased returns an initialized Stream for high-biased quantiles (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but error guarantees can still be given even for the higher ranks of the data distribution. The provided epsilon is a relative error, i.e. the true quantile of a value returned by a query is guaranteed to be within 1-(1±Epsilon)*(1-Quantile). See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error properties.
func ( float64) *Stream {
	 := func( *stream,  float64) float64 {
		return 2 *  * (.n - )
	}
	return newStream()
}
NewTargeted returns an initialized Stream concerned with a particular set of quantile values that are supplied a priori. Knowing these a priori reduces space and computation time. The targets map maps the desired quantiles to their absolute errors, i.e. the true quantile of a value returned by a query is guaranteed to be within (Quantile±Epsilon). See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error properties.
Convert map to slice to avoid slow iterations on a map. ƒ is called on the hot path, so converting the map to a slice beforehand results in significant CPU savings.
	 := targetMapToSlice()

	 := func( *stream,  float64) float64 {
		var  = math.MaxFloat64
		var  float64
		for ,  := range  {
			if .quantile*.n <=  {
				 = (2 * .epsilon * ) / .quantile
			} else {
				 = (2 * .epsilon * (.n - )) / (1 - .quantile)
			}
			if  <  {
				 = 
			}
		}
		return 
	}
	return newStream()
}

type target struct {
	quantile float64
	epsilon  float64
}

func ( map[float64]float64) []target {
	 := make([]target, 0, len())

	for ,  := range  {
		 := target{
			quantile: ,
			epsilon:  ,
		}
		 = append(, )
	}

	return 
}
Stream computes quantiles for a stream of float64s. It is not thread-safe by design. Take care when using across multiple goroutines.
type Stream struct {
	*stream
	b      Samples
	sorted bool
}

func ( invariant) *Stream {
	 := &stream{ƒ: }
	return &Stream{, make(Samples, 0, 500), true}
}
Insert inserts v into the stream.
func ( *Stream) ( float64) {
	.insert(Sample{Value: , Width: 1})
}

func ( *Stream) ( Sample) {
	.b = append(.b, )
	.sorted = false
	if len(.b) == cap(.b) {
		.flush()
	}
}
Query returns the computed qth percentiles value. If s was created with NewTargeted, and q is not in the set of quantiles provided a priori, Query will return an unspecified result.
func ( *Stream) ( float64) float64 {
Fast path when there hasn't been enough data for a flush; this also yields better accuracy for small sets of data.
		 := len(.b)
		if  == 0 {
			return 0
		}
		 := int(math.Ceil(float64() * ))
		if  > 0 {
			 -= 1
		}
		.maybeSort()
		return .b[].Value
	}
	.flush()
	return .stream.query()
}
Merge merges samples into the underlying streams samples. This is handy when merging multiple streams from separate threads, database shards, etc. ATTENTION: This method is broken and does not yield correct results. The underlying algorithm is not capable of merging streams correctly.
func ( *Stream) ( Samples) {
	sort.Sort()
	.stream.merge()
}
Reset reinitializes and clears the list reusing the samples buffer memory.
func ( *Stream) () {
	.stream.reset()
	.b = .b[:0]
}
Samples returns stream samples held by s.
func ( *Stream) () Samples {
	if !.flushed() {
		return .b
	}
	.flush()
	return .stream.samples()
}
Count returns the total number of samples observed in the stream since initialization.
func ( *Stream) () int {
	return len(.b) + .stream.count()
}

func ( *Stream) () {
	.maybeSort()
	.stream.merge(.b)
	.b = .b[:0]
}

func ( *Stream) () {
	if !.sorted {
		.sorted = true
		sort.Sort(.b)
	}
}

func ( *Stream) () bool {
	return len(.stream.l) > 0
}

type stream struct {
	n float64
	l []Sample
	ƒ invariant
}

func ( *stream) () {
	.l = .l[:0]
	.n = 0
}

func ( *stream) ( float64) {
	.merge(Samples{{, 1, 0}})
}

TODO(beorn7): This tries to merge not only individual samples, but whole summaries. The paper doesn't mention merging summaries at all. Unittests show that the merging is inaccurate. Find out how to do merges properly.
	var  float64
	 := 0
	for ,  := range  {
		for ;  < len(.l); ++ {
			 := .l[]
Insert at position i.
				.l = append(.l, Sample{})
				copy(.l[+1:], .l[:])
				.l[] = Sample{
					.Value,
					.Width,
TODO(beorn7): How to calculate delta correctly?
				}
				++
				goto 
			}
			 += .Width
		}
		.l = append(.l, Sample{.Value, .Width, 0})
		++
	:
		.n += .Width
		 += .Width
	}
	.compress()
}

func ( *stream) () int {
	return int(.n)
}

func ( *stream) ( float64) float64 {
	 := math.Ceil( * .n)
	 += math.Ceil(.ƒ(, ) / 2)
	 := .l[0]
	var  float64
	for ,  := range .l[1:] {
		 += .Width
		if +.Width+.Delta >  {
			return .Value
		}
		 = 
	}
	return .Value
}

func ( *stream) () {
	if len(.l) < 2 {
		return
	}
	 := .l[len(.l)-1]
	 := len(.l) - 1
	 := .n - 1 - .Width

	for  := len(.l) - 2;  >= 0; -- {
		 := .l[]
		if .Width+.Width+.Delta <= .ƒ(, ) {
			.Width += .Width
Remove element at i.
			copy(.l[:], .l[+1:])
			.l = .l[:len(.l)-1]
			 -= 1
		} else {
			 = 
			 = 
		}
		 -= .Width
	}
}

func ( *stream) () Samples {
	 := make(Samples, len(.l))
	copy(, .l)
	return