Copyright 2017, OpenCensus Authors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

package view

import (
	
	

	
)
AggregationData represents an aggregated value from a collection. They are reported on the view data during exporting. Mosts users won't directly access aggregration data.
type AggregationData interface {
	isAggregationData() bool
	addSample(v float64, attachments map[string]interface{}, t time.Time)
	clone() AggregationData
	equal(other AggregationData) bool
	toPoint(t metricdata.Type, time time.Time) metricdata.Point
}

const epsilon = 1e-9
CountData is the aggregated data for the Count aggregation. A count aggregation processes data and counts the recordings. Most users won't directly access count data.
type CountData struct {
	Value int64
}

func ( *CountData) () bool { return true }

func ( *CountData) ( float64,  map[string]interface{},  time.Time) {
	.Value = .Value + 1
}

func ( *CountData) () AggregationData {
	return &CountData{Value: .Value}
}

func ( *CountData) ( AggregationData) bool {
	,  := .(*CountData)
	if ! {
		return false
	}

	return .Value == .Value
}

func ( *CountData) ( metricdata.Type,  time.Time) metricdata.Point {
	switch  {
	case metricdata.TypeCumulativeInt64:
		return metricdata.NewInt64Point(, .Value)
	default:
		panic("unsupported metricdata.Type")
	}
}
SumData is the aggregated data for the Sum aggregation. A sum aggregation processes data and sums up the recordings. Most users won't directly access sum data.
type SumData struct {
	Value float64
}

func ( *SumData) () bool { return true }

func ( *SumData) ( float64,  map[string]interface{},  time.Time) {
	.Value += 
}

func ( *SumData) () AggregationData {
	return &SumData{Value: .Value}
}

func ( *SumData) ( AggregationData) bool {
	,  := .(*SumData)
	if ! {
		return false
	}
	return math.Pow(.Value-.Value, 2) < epsilon
}

func ( *SumData) ( metricdata.Type,  time.Time) metricdata.Point {
	switch  {
	case metricdata.TypeCumulativeInt64:
		return metricdata.NewInt64Point(, int64(.Value))
	case metricdata.TypeCumulativeFloat64:
		return metricdata.NewFloat64Point(, .Value)
	default:
		panic("unsupported metricdata.Type")
	}
}
DistributionData is the aggregated data for the Distribution aggregation. Most users won't directly access distribution data. For a distribution with N bounds, the associated DistributionData will have N+1 buckets.
type DistributionData struct {
	Count           int64   // number of data points aggregated
	Min             float64 // minimum value in the distribution
	Max             float64 // max value in the distribution
	Mean            float64 // mean of the distribution
	SumOfSquaredDev float64 // sum of the squared deviation from the mean
ExemplarsPerBucket is slice the same length as CountPerBucket containing an exemplar for the associated bucket, or nil.
	ExemplarsPerBucket []*metricdata.Exemplar
	bounds             []float64 // histogram distribution of the values
}

func ( *Aggregation) *DistributionData {
	 := len(.Buckets) + 1
	return &DistributionData{
		CountPerBucket:     make([]int64, ),
		ExemplarsPerBucket: make([]*metricdata.Exemplar, ),
		bounds:             .Buckets,
		Min:                math.MaxFloat64,
		Max:                math.SmallestNonzeroFloat64,
	}
}
Sum returns the sum of all samples collected.
func ( *DistributionData) () float64 { return .Mean * float64(.Count) }

func ( *DistributionData) () float64 {
	if .Count <= 1 {
		return 0
	}
	return .SumOfSquaredDev / float64(.Count-1)
}

func ( *DistributionData) () bool { return true }
TODO(songy23): support exemplar attachments.
func ( *DistributionData) ( float64,  map[string]interface{},  time.Time) {
	if  < .Min {
		.Min = 
	}
	if  > .Max {
		.Max = 
	}
	.Count++
	.addToBucket(, , )

	if .Count == 1 {
		.Mean = 
		return
	}

	 := .Mean
	.Mean = .Mean + (-.Mean)/float64(.Count)
	.SumOfSquaredDev = .SumOfSquaredDev + (-)*(-.Mean)
}

func ( *DistributionData) ( float64,  map[string]interface{},  time.Time) {
	var  *int64
	var  int
	var  float64
	for ,  = range .bounds {
		if  <  {
			 = &.CountPerBucket[]
			break
		}
	}
	if  == nil { // Last bucket.
		 = len(.bounds)
		 = &.CountPerBucket[]
	}
	*++
	if  := getExemplar(, , );  != nil {
		.ExemplarsPerBucket[] = 
	}
}

func ( float64,  map[string]interface{},  time.Time) *metricdata.Exemplar {
	if len() == 0 {
		return nil
	}
	return &metricdata.Exemplar{
		Value:       ,
		Timestamp:   ,
		Attachments: ,
	}
}

func ( *DistributionData) () AggregationData {
	 := *
	.CountPerBucket = append([]int64(nil), .CountPerBucket...)
	.ExemplarsPerBucket = append([]*metricdata.Exemplar(nil), .ExemplarsPerBucket...)
	return &
}

func ( *DistributionData) ( AggregationData) bool {
	,  := .(*DistributionData)
	if ! {
		return false
	}
	if  == nil {
		return false
	}
	if len(.CountPerBucket) != len(.CountPerBucket) {
		return false
	}
	for  := range .CountPerBucket {
		if .CountPerBucket[] != .CountPerBucket[] {
			return false
		}
	}
	return .Count == .Count && .Min == .Min && .Max == .Max && math.Pow(.Mean-.Mean, 2) < epsilon && math.Pow(.variance()-.variance(), 2) < epsilon
}

func ( *DistributionData) ( metricdata.Type,  time.Time) metricdata.Point {
	switch  {
	case metricdata.TypeCumulativeDistribution:
		 := []metricdata.Bucket{}
		for  := 0;  < len(.CountPerBucket); ++ {
			 = append(, metricdata.Bucket{
				Count:    .CountPerBucket[],
				Exemplar: .ExemplarsPerBucket[],
			})
		}
		 := &metricdata.BucketOptions{Bounds: .bounds}

		 := &metricdata.Distribution{
			Count:                 .Count,
			Sum:                   .Sum(),
			SumOfSquaredDeviation: .SumOfSquaredDev,
			BucketOptions:         ,
			Buckets:               ,
		}
		return metricdata.NewDistributionPoint(, )

TODO: [rghetia] when we have a use case for TypeGaugeDistribution.
		panic("unsupported metricdata.Type")
	}
}
LastValueData returns the last value recorded for LastValue aggregation.
type LastValueData struct {
	Value float64
}

func ( *LastValueData) () bool {
	return true
}

func ( *LastValueData) ( float64,  map[string]interface{},  time.Time) {
	.Value = 
}

func ( *LastValueData) () AggregationData {
	return &LastValueData{.Value}
}

func ( *LastValueData) ( AggregationData) bool {
	,  := .(*LastValueData)
	if ! {
		return false
	}
	return .Value == .Value
}

func ( *LastValueData) ( metricdata.Type,  time.Time) metricdata.Point {
	switch  {
	case metricdata.TypeGaugeInt64:
		return metricdata.NewInt64Point(, int64(.Value))
	case metricdata.TypeGaugeFloat64:
		return metricdata.NewFloat64Point(, .Value)
	default:
		panic("unsupported metricdata.Type")
	}