Copyright 2016 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
Package chacha20 implements the ChaCha20 and XChaCha20 encryption algorithms as specified in RFC 8439 and draft-irtf-cfrg-xchacha-01.
package chacha20

import (
	
	
	
	

	
)

KeySize is the size of the key used by this cipher, in bytes.
	KeySize = 32
NonceSize is the size of the nonce used with the standard variant of this cipher, in bytes. Note that this is too short to be safely generated at random if the same key is reused more than 2³² times.
	NonceSize = 12
NonceSizeX is the size of the nonce used with the XChaCha20 variant of this cipher, in bytes.
	NonceSizeX = 24
)
Cipher is a stateful instance of ChaCha20 or XChaCha20 using a particular key and nonce. A *Cipher implements the cipher.Stream interface.
The ChaCha20 state is 16 words: 4 constant, 8 of key, 1 of counter (incremented after each block), and 3 of nonce.
The last len bytes of buf are leftover key stream bytes from the previous XORKeyStream invocation. The size of buf depends on how many blocks are computed at a time by xorKeyStreamBlocks.
overflow is set when the counter overflowed, no more blocks can be generated, and the next XORKeyStream call should panic.
The counter-independent results of the first round are cached after they are computed the first time.
NewUnauthenticatedCipher creates a new ChaCha20 stream cipher with the given 32 bytes key and a 12 or 24 bytes nonce. If a nonce of 24 bytes is provided, the XChaCha20 construction will be used. It returns an error if key or nonce have any other length. Note that ChaCha20, like all stream ciphers, is not authenticated and allows attackers to silently tamper with the plaintext. For this reason, it is more appropriate as a building block than as a standalone encryption mechanism. Instead, consider using package golang.org/x/crypto/chacha20poly1305.
This function is split into a wrapper so that the Cipher allocation will be inlined, and depending on how the caller uses the return value, won't escape to the heap.
	 := &Cipher{}
	return newUnauthenticatedCipher(, , )
}

func ( *Cipher, ,  []byte) (*Cipher, error) {
	if len() != KeySize {
		return nil, errors.New("chacha20: wrong key size")
	}
XChaCha20 uses the ChaCha20 core to mix 16 bytes of the nonce into a derived key, allowing it to operate on a nonce of 24 bytes. See draft-irtf-cfrg-xchacha-01, Section 2.3.
		, _ = HChaCha20(, [0:16])
		 := make([]byte, NonceSize)
		copy([4:12], [16:24])
		 = 
	} else if len() != NonceSize {
		return nil, errors.New("chacha20: wrong nonce size")
	}

	,  = [:KeySize], [:NonceSize] // bounds check elimination hint
	.key = [8]uint32{
		binary.LittleEndian.Uint32([0:4]),
		binary.LittleEndian.Uint32([4:8]),
		binary.LittleEndian.Uint32([8:12]),
		binary.LittleEndian.Uint32([12:16]),
		binary.LittleEndian.Uint32([16:20]),
		binary.LittleEndian.Uint32([20:24]),
		binary.LittleEndian.Uint32([24:28]),
		binary.LittleEndian.Uint32([28:32]),
	}
	.nonce = [3]uint32{
		binary.LittleEndian.Uint32([0:4]),
		binary.LittleEndian.Uint32([4:8]),
		binary.LittleEndian.Uint32([8:12]),
	}
	return , nil
}
The constant first 4 words of the ChaCha20 state.
const (
	j0 uint32 = 0x61707865 // expa
	j1 uint32 = 0x3320646e // nd 3
	j2 uint32 = 0x79622d32 // 2-by
	j3 uint32 = 0x6b206574 // te k
)

const blockSize = 64
quarterRound is the core of ChaCha20. It shuffles the bits of 4 state words. It's executed 4 times for each of the 20 ChaCha20 rounds, operating on all 16 words each round, in columnar or diagonal groups of 4 at a time.
func (, , ,  uint32) (uint32, uint32, uint32, uint32) {
	 += 
	 ^= 
	 = bits.RotateLeft32(, 16)
	 += 
	 ^= 
	 = bits.RotateLeft32(, 12)
	 += 
	 ^= 
	 = bits.RotateLeft32(, 8)
	 += 
	 ^= 
	 = bits.RotateLeft32(, 7)
	return , , , 
}
SetCounter sets the Cipher counter. The next invocation of XORKeyStream will behave as if (64 * counter) bytes had been encrypted so far. To prevent accidental counter reuse, SetCounter panics if counter is less than the current value. Note that the execution time of XORKeyStream is not independent of the counter value.
Internally, s may buffer multiple blocks, which complicates this implementation slightly. When checking whether the counter has rolled back, we must use both s.counter and s.len to determine how many blocks we have already output.
	 := .counter - uint32(.len)/blockSize
	if .overflow ||  <  {
		panic("chacha20: SetCounter attempted to rollback counter")
	}
In the general case, we set the new counter value and reset s.len to 0, causing the next call to XORKeyStream to refill the buffer. However, if we're advancing within the existing buffer, we can save work by simply setting s.len.
	if  < .counter {
		.len = int(.counter-) * blockSize
	} else {
		.counter = 
		.len = 0
	}
}
XORKeyStream XORs each byte in the given slice with a byte from the cipher's key stream. Dst and src must overlap entirely or not at all. If len(dst) < len(src), XORKeyStream will panic. It is acceptable to pass a dst bigger than src, and in that case, XORKeyStream will only update dst[:len(src)] and will not touch the rest of dst. Multiple calls to XORKeyStream behave as if the concatenation of the src buffers was passed in a single run. That is, Cipher maintains state and does not reset at each XORKeyStream call.
func ( *Cipher) (,  []byte) {
	if len() == 0 {
		return
	}
	if len() < len() {
		panic("chacha20: output smaller than input")
	}
	 = [:len()]
	if subtle.InexactOverlap(, ) {
		panic("chacha20: invalid buffer overlap")
	}
First, drain any remaining key stream from a previous XORKeyStream.
	if .len != 0 {
		 := .buf[bufSize-.len:]
		if len() < len() {
			 = [:len()]
		}
		_ = [len()-1] // bounds check elimination hint
		for ,  := range  {
			[] = [] ^ 
		}
		.len -= len()
		,  = [len():], [len():]
	}
	if len() == 0 {
		return
	}
If we'd need to let the counter overflow and keep generating output, panic immediately. If instead we'd only reach the last block, remember not to generate any more output after the buffer is drained.
	 := (uint64(len()) + blockSize - 1) / blockSize
	if .overflow || uint64(.counter)+ > 1<<32 {
		panic("chacha20: counter overflow")
	} else if uint64(.counter)+ == 1<<32 {
		.overflow = true
	}
xorKeyStreamBlocks implementations expect input lengths that are a multiple of bufSize. Platform-specific ones process multiple blocks at a time, so have bufSizes that are a multiple of blockSize.

	 := len() - len()%bufSize
	if  > 0 {
		.xorKeyStreamBlocks([:], [:])
	}
	,  = [:], [:]
If using a multi-block xorKeyStreamBlocks would overflow, use the generic one that does one block at a time.
	const  = bufSize / blockSize
	if uint64(.counter)+ > 1<<32 {
		.buf = [bufSize]byte{}
		 := (len() + blockSize - 1) / blockSize
		 := .buf[bufSize-*blockSize:]
		copy(, )
		.xorKeyStreamBlocksGeneric(, )
		.len = len() - copy(, )
		return
	}
If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and keep the leftover keystream for the next XORKeyStream invocation.
	if len() > 0 {
		.buf = [bufSize]byte{}
		copy(.buf[:], )
		.xorKeyStreamBlocks(.buf[:], .buf[:])
		.len = bufSize - copy(, .buf[:])
	}
}

func ( *Cipher) (,  []byte) {
	if len() != len() || len()%blockSize != 0 {
		panic("chacha20: internal error: wrong dst and/or src length")
	}
To generate each block of key stream, the initial cipher state (represented below) is passed through 20 rounds of shuffling, alternatively applying quarterRounds by columns (like 1, 5, 9, 13) or by diagonals (like 1, 6, 11, 12). 0:cccccccc 1:cccccccc 2:cccccccc 3:cccccccc 4:kkkkkkkk 5:kkkkkkkk 6:kkkkkkkk 7:kkkkkkkk 8:kkkkkkkk 9:kkkkkkkk 10:kkkkkkkk 11:kkkkkkkk 12:bbbbbbbb 13:nnnnnnnn 14:nnnnnnnn 15:nnnnnnnn c=constant k=key b=blockcount n=nonce
	var (
		, , ,    = j0, j1, j2, j3
		, , ,    = .key[0], .key[1], .key[2], .key[3]
		, , ,  = .key[4], .key[5], .key[6], .key[7]
		, , ,  = .counter, .nonce[0], .nonce[1], .nonce[2]
	)
Three quarters of the first round don't depend on the counter, so we can calculate them here, and reuse them for multiple blocks in the loop, and for future XORKeyStream invocations.
	if !.precompDone {
		.p1, .p5, .p9, .p13 = quarterRound(, , , )
		.p2, .p6, .p10, .p14 = quarterRound(, , , )
		.p3, .p7, .p11, .p15 = quarterRound(, , , )
		.precompDone = true
	}
A condition of len(src) > 0 would be sufficient, but this also acts as a bounds check elimination hint.
The remainder of the first column round.
		, , ,  := quarterRound(, , , .counter)
The second diagonal round.
		, , ,  := quarterRound(, .p5, .p10, .p15)
		, , ,  := quarterRound(.p1, .p6, .p11, )
		, , ,  := quarterRound(.p2, .p7, , .p13)
		, , ,  := quarterRound(.p3, , .p9, .p14)
The remaining 18 rounds.
Column round.
			, , ,  = quarterRound(, , , )
			, , ,  = quarterRound(, , , )
			, , ,  = quarterRound(, , , )
			, , ,  = quarterRound(, , , )
Diagonal round.
			, , ,  = quarterRound(, , , )
			, , ,  = quarterRound(, , , )
			, , ,  = quarterRound(, , , )
			, , ,  = quarterRound(, , , )
		}
Add back the initial state to generate the key stream, then XOR the key stream with the source and write out the result.
		addXor([0:4], [0:4], , )
		addXor([4:8], [4:8], , )
		addXor([8:12], [8:12], , )
		addXor([12:16], [12:16], , )
		addXor([16:20], [16:20], , )
		addXor([20:24], [20:24], , )
		addXor([24:28], [24:28], , )
		addXor([28:32], [28:32], , )
		addXor([32:36], [32:36], , )
		addXor([36:40], [36:40], , )
		addXor([40:44], [40:44], , )
		addXor([44:48], [44:48], , )
		addXor([48:52], [48:52], , .counter)
		addXor([52:56], [52:56], , )
		addXor([56:60], [56:60], , )
		addXor([60:64], [60:64], , )

		.counter += 1

		,  = [blockSize:], [blockSize:]
	}
}
HChaCha20 uses the ChaCha20 core to generate a derived key from a 32 bytes key and a 16 bytes nonce. It returns an error if key or nonce have any other length. It is used as part of the XChaCha20 construction.
This function is split into a wrapper so that the slice allocation will be inlined, and depending on how the caller uses the return value, won't escape to the heap.
	 := make([]byte, 32)
	return hChaCha20(, , )
}

func (, ,  []byte) ([]byte, error) {
	if len() != KeySize {
		return nil, errors.New("chacha20: wrong HChaCha20 key size")
	}
	if len() != 16 {
		return nil, errors.New("chacha20: wrong HChaCha20 nonce size")
	}

	, , ,  := j0, j1, j2, j3
	 := binary.LittleEndian.Uint32([0:4])
	 := binary.LittleEndian.Uint32([4:8])
	 := binary.LittleEndian.Uint32([8:12])
	 := binary.LittleEndian.Uint32([12:16])
	 := binary.LittleEndian.Uint32([16:20])
	 := binary.LittleEndian.Uint32([20:24])
	 := binary.LittleEndian.Uint32([24:28])
	 := binary.LittleEndian.Uint32([28:32])
	 := binary.LittleEndian.Uint32([0:4])
	 := binary.LittleEndian.Uint32([4:8])
	 := binary.LittleEndian.Uint32([8:12])
	 := binary.LittleEndian.Uint32([12:16])

Diagonal round.
		, , ,  = quarterRound(, , , )
		, , ,  = quarterRound(, , , )
		, , ,  = quarterRound(, , , )
		, , ,  = quarterRound(, , , )
Column round.
		, , ,  = quarterRound(, , , )
		, , ,  = quarterRound(, , , )
		, , ,  = quarterRound(, , , )
		, , ,  = quarterRound(, , , )
	}

	_ = [31] // bounds check elimination hint
	binary.LittleEndian.PutUint32([0:4], )
	binary.LittleEndian.PutUint32([4:8], )
	binary.LittleEndian.PutUint32([8:12], )
	binary.LittleEndian.PutUint32([12:16], )
	binary.LittleEndian.PutUint32([16:20], )
	binary.LittleEndian.PutUint32([20:24], )
	binary.LittleEndian.PutUint32([24:28], )
	binary.LittleEndian.PutUint32([28:32], )
	return , nil