Copyright 2011 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
AMD64-specific hardware-assisted CRC32 algorithms. See crc32.go for a description of the interface that each architecture-specific file implements.

package crc32

import (
	
	
)
This file contains the code to call the SSE 4.2 version of the Castagnoli and IEEE CRC.
castagnoliSSE42 is defined in crc32_amd64.s and uses the SSE 4.2 CRC32 instruction.go:noescape
castagnoliSSE42Triple is defined in crc32_amd64.s and uses the SSE 4.2 CRC32 instruction.go:noescape
func (
	, ,  uint32,
	, ,  []byte,
	 uint32,
) ( uint32,  uint32,  uint32)
ieeeCLMUL is defined in crc_amd64.s and uses the PCLMULQDQ instruction as well as SSE 4.1.go:noescape
func ( uint32,  []byte) uint32

const castagnoliK1 = 168
const castagnoliK2 = 1344

type sse42Table [4]Table

var castagnoliSSE42TableK1 *sse42Table
var castagnoliSSE42TableK2 *sse42Table

func () bool {
	return cpu.X86.HasSSE42
}

func () {
	if !cpu.X86.HasSSE42 {
		panic("arch-specific Castagnoli not available")
	}
	castagnoliSSE42TableK1 = new(sse42Table)
See description in updateCastagnoli. t[0][i] = CRC(i000, O) t[1][i] = CRC(0i00, O) t[2][i] = CRC(00i0, O) t[3][i] = CRC(000i, O) where O is a sequence of K zeros.
	var  [castagnoliK2]byte
	for  := 0;  < 4; ++ {
		for  := 0;  < 256; ++ {
			 := uint32() << uint32(*8)
			castagnoliSSE42TableK1[][] = castagnoliSSE42(, [:castagnoliK1])
			castagnoliSSE42TableK2[][] = castagnoliSSE42(, [:])
		}
	}
}
castagnoliShift computes the CRC32-C of K1 or K2 zeroes (depending on the table given) with the given initial crc value. This corresponds to CRC(crc, O) in the description in updateCastagnoli.
func ( *sse42Table,  uint32) uint32 {
	return [3][>>24] ^
		[2][(>>16)&0xFF] ^
		[1][(>>8)&0xFF] ^
		[0][&0xFF]
}

func ( uint32,  []byte) uint32 {
	if !cpu.X86.HasSSE42 {
		panic("not available")
	}
This method is inspired from the algorithm in Intel's white paper: "Fast CRC Computation for iSCSI Polynomial Using CRC32 Instruction" The same strategy of splitting the buffer in three is used but the combining calculation is different; the complete derivation is explained below. -- The basic idea -- The CRC32 instruction (available in SSE4.2) can process 8 bytes at a time. In recent Intel architectures the instruction takes 3 cycles; however the processor can pipeline up to three instructions if they don't depend on each other. Roughly this means that we can process three buffers in about the same time we can process one buffer. The idea is then to split the buffer in three, CRC the three pieces separately and then combine the results. Combining the results requires precomputed tables, so we must choose a fixed buffer length to optimize. The longer the length, the faster; but only buffers longer than this length will use the optimization. We choose two cutoffs and compute tables for both: - one around 512: 168*3=504 - one around 4KB: 1344*3=4032 -- The nitty gritty -- Let CRC(I, X) be the non-inverted CRC32-C of the sequence X (with initial non-inverted CRC I). This function has the following properties: (a) CRC(I, AB) = CRC(CRC(I, A), B) (b) CRC(I, A xor B) = CRC(I, A) xor CRC(0, B) Say we want to compute CRC(I, ABC) where A, B, C are three sequences of K bytes each, where K is a fixed constant. Let O be the sequence of K zero bytes. CRC(I, ABC) = CRC(I, ABO xor C) = CRC(I, ABO) xor CRC(0, C) = CRC(CRC(I, AB), O) xor CRC(0, C) = CRC(CRC(I, AO xor B), O) xor CRC(0, C) = CRC(CRC(I, AO) xor CRC(0, B), O) xor CRC(0, C) = CRC(CRC(CRC(I, A), O) xor CRC(0, B), O) xor CRC(0, C) The castagnoliSSE42Triple function can compute CRC(I, A), CRC(0, B), and CRC(0, C) efficiently. We just need to find a way to quickly compute CRC(uvwx, O) given a 4-byte initial value uvwx. We can precompute these values; since we can't have a 32-bit table, we break it up into four 8-bit tables: CRC(uvwx, O) = CRC(u000, O) xor CRC(0v00, O) xor CRC(00w0, O) xor CRC(000x, O) We can compute tables corresponding to the four terms for all 8-bit values.

	 = ^
If a buffer is long enough to use the optimization, process the first few bytes to align the buffer to an 8 byte boundary (if necessary).
	if len() >= castagnoliK1*3 {
		 := int(uintptr(unsafe.Pointer(&[0])) & 7)
		if  != 0 {
			 = 8 - 
			 = castagnoliSSE42(, [:])
			 = [:]
		}
	}
Process 3*K2 at a time.
Compute CRC(I, A), CRC(0, B), and CRC(0, C).
		, ,  := castagnoliSSE42Triple(
			, 0, 0,
			, [castagnoliK2:], [castagnoliK2*2:],
			castagnoliK2/24)
CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
		 = castagnoliShift(castagnoliSSE42TableK2, ) ^ 
		 = [castagnoliK2*3:]
	}
Process 3*K1 at a time.
Compute CRC(I, A), CRC(0, B), and CRC(0, C).
		, ,  := castagnoliSSE42Triple(
			, 0, 0,
			, [castagnoliK1:], [castagnoliK1*2:],
			castagnoliK1/24)
CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
		 = castagnoliShift(castagnoliSSE42TableK1, ) ^ 
		 = [castagnoliK1*3:]
	}
Use the simple implementation for what's left.
	 = castagnoliSSE42(, )
	return ^
}

func () bool {
	return cpu.X86.HasPCLMULQDQ && cpu.X86.HasSSE41
}

var archIeeeTable8 *slicing8Table

func () {
	if !cpu.X86.HasPCLMULQDQ || !cpu.X86.HasSSE41 {
		panic("not available")
We still use slicing-by-8 for small buffers.
	archIeeeTable8 = slicingMakeTable(IEEE)
}

func ( uint32,  []byte) uint32 {
	if !cpu.X86.HasPCLMULQDQ || !cpu.X86.HasSSE41 {
		panic("not available")
	}

	if len() >= 64 {
		 := len() & 15
		 := len() - 
		 = ^ieeeCLMUL(^, [:])
		 = [:]
	}
	if len() == 0 {
		return 
	}
	return slicingUpdate(, archIeeeTable8, )