Copyright 2015 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
This file implements string-to-Float conversion functions.

package big

import (
	
	
	
)

var floatZero Float
SetString sets z to the value of s and returns z and a boolean indicating success. s must be a floating-point number of the same format as accepted by Parse, with base argument 0. The entire string (not just a prefix) must be valid for success. If the operation failed, the value of z is undefined but the returned value is nil.
func ( *Float) ( string) (*Float, bool) {
	if , ,  := .Parse(, 0);  == nil {
		return , true
	}
	return nil, false
}
scan is like Parse but reads the longest possible prefix representing a valid floating point number from an io.ByteScanner rather than a string. It serves as the implementation of Parse. It does not recognize ±Inf and does not expect EOF at the end.
func ( *Float) ( io.ByteScanner,  int) ( *Float,  int,  error) {
	 := .prec
	if  == 0 {
		 = 64
	}
A reasonable value in case of an error.
	.form = zero
sign
	.neg,  = scanSign()
	if  != nil {
		return
	}
mantissa
	var  int // fractional digit count; valid if <= 0
	.mant, , ,  = .mant.scan(, , true)
	if  != nil {
		return
	}
exponent
	var  int64
	var  int
	, ,  = scanExponent(, true,  == 0)
	if  != nil {
		return
	}
special-case 0
	if len(.mant) == 0 {
		.prec = 
		.acc = Exact
		.form = zero
		 = 
		return
len(z.mant) > 0
The mantissa may have a radix point (fcount <= 0) and there may be a nonzero exponent exp. The radix point amounts to a division by b**(-fcount). An exponent means multiplication by ebase**exp. Finally, mantissa normalization (shift left) requires a correcting multiplication by 2**(-shiftcount). Multiplications are commutative, so we can apply them in any order as long as there is no loss of precision. We only have powers of 2 and 10, and we split powers of 10 into the product of the same powers of 2 and 5. This reduces the size of the multiplication factor needed for base-10 exponents.
normalize mantissa and determine initial exponent contributions
	 := int64(len(.mant))*_W - fnorm(.mant)
	 := int64(0)
determine binary or decimal exponent contribution of radix point
The mantissa has a radix point ddd.dddd; and -fcount is the number of digits to the right of '.'. Adjust relevant exponent accordingly.
		 := int64()
		switch  {
		case 10:
			 = 
			fallthrough // 10**e == 5**e * 2**e
		case 2:
			 += 
		case 8:
			 +=  * 3 // octal digits are 3 bits each
		case 16:
			 +=  * 4 // hexadecimal digits are 4 bits each
		default:
			panic("unexpected mantissa base")
fcount consumed - not needed anymore
	}
take actual exponent into account
	switch  {
	case 10:
		 += 
		fallthrough // see fallthrough above
	case 2:
		 += 
	default:
		panic("unexpected exponent base")
exp consumed - not needed anymore
apply 2**exp2
	if MinExp <=  &&  <= MaxExp {
		.prec = 
		.form = finite
		.exp = int32()
		 = 
	} else {
		 = fmt.Errorf("exponent overflow")
		return
	}

no decimal exponent contribution
		.round(0)
		return
exp5 != 0
apply 5**exp5
	 := new(Float).SetPrec(.Prec() + 64) // use more bits for p -- TODO(gri) what is the right number?
	if  < 0 {
		.Quo(, .pow5(uint64(-)))
	} else {
		.Mul(, .pow5(uint64()))
	}

	return
}
These powers of 5 fit into a uint64. for p, q := uint64(0), uint64(1); p < q; p, q = q, q*5 { fmt.Println(q) }
var pow5tab = [...]uint64{
	1,
	5,
	25,
	125,
	625,
	3125,
	15625,
	78125,
	390625,
	1953125,
	9765625,
	48828125,
	244140625,
	1220703125,
	6103515625,
	30517578125,
	152587890625,
	762939453125,
	3814697265625,
	19073486328125,
	95367431640625,
	476837158203125,
	2384185791015625,
	11920928955078125,
	59604644775390625,
	298023223876953125,
	1490116119384765625,
	7450580596923828125,
}
pow5 sets z to 5**n and returns z. n must not be negative.
func ( *Float) ( uint64) *Float {
	const  = uint64(len(pow5tab) - 1)
	if  <=  {
		return .SetUint64(pow5tab[])
n > m

	.SetUint64(pow5tab[])
	 -= 
use more bits for f than for z TODO(gri) what is the right number?
	 := new(Float).SetPrec(.Prec() + 64).SetUint64(5)

	for  > 0 {
		if &1 != 0 {
			.Mul(, )
		}
		.Mul(, )
		 >>= 1
	}

	return 
}
Parse parses s which must contain a text representation of a floating- point number with a mantissa in the given conversion base (the exponent is always a decimal number), or a string representing an infinite value. For base 0, an underscore character ``_'' may appear between a base prefix and an adjacent digit, and between successive digits; such underscores do not change the value of the number, or the returned digit count. Incorrect placement of underscores is reported as an error if there are no other errors. If base != 0, underscores are not recognized and thus terminate scanning like any other character that is not a valid radix point or digit. It sets z to the (possibly rounded) value of the corresponding floating- point value, and returns z, the actual base b, and an error err, if any. The entire string (not just a prefix) must be consumed for success. If z's precision is 0, it is changed to 64 before rounding takes effect. The number must be of the form: number = [ sign ] ( float | "inf" | "Inf" ) . sign = "+" | "-" . float = ( mantissa | prefix pmantissa ) [ exponent ] . prefix = "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] . mantissa = digits "." [ digits ] | digits | "." digits . pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits . exponent = ( "e" | "E" | "p" | "P" ) [ sign ] digits . digits = digit { [ "_" ] digit } . digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" . The base argument must be 0, 2, 8, 10, or 16. Providing an invalid base argument will lead to a run-time panic. For base 0, the number prefix determines the actual base: A prefix of ``0b'' or ``0B'' selects base 2, ``0o'' or ``0O'' selects base 8, and ``0x'' or ``0X'' selects base 16. Otherwise, the actual base is 10 and no prefix is accepted. The octal prefix "0" is not supported (a leading "0" is simply considered a "0"). A "p" or "P" exponent indicates a base 2 (rather then base 10) exponent; for instance, "0x1.fffffffffffffp1023" (using base 0) represents the maximum float64 value. For hexadecimal mantissae, the exponent character must be one of 'p' or 'P', if present (an "e" or "E" exponent indicator cannot be distinguished from a mantissa digit). The returned *Float f is nil and the value of z is valid but not defined if an error is reported.
scan doesn't handle ±Inf
	if len() == 3 && ( == "Inf" ||  == "inf") {
		 = .SetInf(false)
		return
	}
	if len() == 4 && ([0] == '+' || [0] == '-') && ([1:] == "Inf" || [1:] == "inf") {
		 = .SetInf([0] == '-')
		return
	}

	 := strings.NewReader()
	if , ,  = .scan(, );  != nil {
		return
	}
entire string must have been consumed
	if ,  := .ReadByte();  == nil {
		 = fmt.Errorf("expected end of string, found %q", )
	} else if  != io.EOF {
		 = 
	}

	return
}
ParseFloat is like f.Parse(s, base) with f set to the given precision and rounding mode.
func ( string,  int,  uint,  RoundingMode) ( *Float,  int,  error) {
	return new(Float).SetPrec().SetMode().Parse(, )
}

var _ fmt.Scanner = (*Float)(nil) // *Float must implement fmt.Scanner
Scan is a support routine for fmt.Scanner; it sets z to the value of the scanned number. It accepts formats whose verbs are supported by fmt.Scan for floating point values, which are: 'b' (binary), 'e', 'E', 'f', 'F', 'g' and 'G'. Scan doesn't handle ±Inf.
func ( *Float) ( fmt.ScanState,  rune) error {
	.SkipSpace()
	, ,  := .scan(byteReader{}, 0)
	return