Copyright 2010 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.

package math
The original C code, the long comment, and the constants below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c and came with this notice. The go code is a simplified version of the original C. ==================================================== Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. Developed at SunPro, a Sun Microsystems, Inc. business. Permission to use, copy, modify, and distribute this software is freely granted, provided that this notice is preserved. ==================================================== double log1p(double x) Method : 1. Argument Reduction: find k and f such that 1+x = 2**k * (1+f), where sqrt(2)/2 < 1+f < sqrt(2) . Note. If k=0, then f=x is exact. However, if k!=0, then f may not be representable exactly. In that case, a correction term is need. Let u=1+x rounded. Let c = (1+x)-u, then log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), and add back the correction term c/u. (Note: when x > 2**53, one can simply return log(x)) 2. Approximation of log1p(f). Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) = 2s + 2/3 s**3 + 2/5 s**5 + ....., = 2s + s*R We use a special Reme algorithm on [0,0.1716] to generate a polynomial of degree 14 to approximate R The maximum error of this polynomial approximation is bounded by 2**-58.45. In other words, 2 4 6 8 10 12 14 R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s (the values of Lp1 to Lp7 are listed in the program) and | 2 14 | -58.45 | Lp1*s +...+Lp7*s - R(z) | <= 2 | | Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. In order to guarantee error in log below 1ulp, we compute log by log1p(f) = f - (hfsq - s*(hfsq+R)). 3. Finally, log1p(x) = k*ln2 + log1p(f). = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) Here ln2 is split into two floating point number: ln2_hi + ln2_lo, where n*ln2_hi is always exact for |n| < 2000. Special cases: log1p(x) is NaN with signal if x < -1 (including -INF) ; log1p(+INF) is +INF; log1p(-1) is -INF with signal; log1p(NaN) is that NaN with no signal. Accuracy: according to an error analysis, the error is always less than 1 ulp (unit in the last place). Constants: The hexadecimal values are the intended ones for the following constants. The decimal values may be used, provided that the compiler will convert from decimal to binary accurately enough to produce the hexadecimal values shown. Note: Assuming log() return accurate answer, the following algorithm can be used to compute log1p(x) to within a few ULP: u = 1+x; if(u==1.0) return x ; else return log(u)*(x/(u-1.0)); See HP-15C Advanced Functions Handbook, p.193.
Log1p returns the natural logarithm of 1 plus its argument x. It is more accurate than Log(1 + x) when x is near zero. Special cases are: Log1p(+Inf) = +Inf Log1p(±0) = ±0 Log1p(-1) = -Inf Log1p(x < -1) = NaN Log1p(NaN) = NaN
func ( float64) float64

func ( float64) float64 {
	const (
		     = 4.142135623730950488017e-01  // Sqrt(2)-1 = 0x3fda827999fcef34
		 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
		       = 1.0 / (1 << 29)              // 2**-29 = 0x3e20000000000000
		        = 1.0 / (1 << 54)              // 2**-54
		       = 1 << 53                      // 2**53
		       = 6.93147180369123816490e-01   // 3fe62e42fee00000
		       = 1.90821492927058770002e-10   // 3dea39ef35793c76
		         = 6.666666666666735130e-01     // 3FE5555555555593
		         = 3.999999999940941908e-01     // 3FD999999997FA04
		         = 2.857142874366239149e-01     // 3FD2492494229359
		         = 2.222219843214978396e-01     // 3FCC71C51D8E78AF
		         = 1.818357216161805012e-01     // 3FC7466496CB03DE
		         = 1.531383769920937332e-01     // 3FC39A09D078C69F
		         = 1.479819860511658591e-01     // 3FC2F112DF3E5244
	)
special cases
	switch {
	case  < -1 || IsNaN(): // includes -Inf
		return NaN()
	case  == -1:
		return Inf(-1)
	case IsInf(, 1):
		return Inf(1)
	}

	 := Abs()

	var  float64
	var  uint64
	 := 1
	if  <  { //  |x| < Sqrt(2)-1
		if  <  { // |x| < 2**-29
			if  <  { // |x| < 2**-54
				return 
			}
			return  - **0.5
		}
(Sqrt(2)/2-1) < x < (Sqrt(2)-1)
			 = 0
			 = 
			 = 1
		}
	}
	var  float64
	if  != 0 {
		var  float64
		if  <  { // 1<<53
			 = 1.0 + 
			 = Float64bits()
correction term
			if  > 0 {
				 = 1.0 - ( - )
			} else {
				 =  - ( - 1.0)
			}
			 /= 
		} else {
			 = 
			 = Float64bits()
			 = int(( >> 52) - 1023)
			 = 0
		}
		 &= 0x000fffffffffffff
		if  < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
			 = Float64frombits( | 0x3ff0000000000000) // normalize u
		} else {
			++
			 = Float64frombits( | 0x3fe0000000000000) // normalize u/2
			 = (0x0010000000000000 - ) >> 2
		}
		 =  - 1.0 // Sqrt(2)/2 < u < Sqrt(2)
	}
	 := 0.5 *  * 
	var , ,  float64
	if  == 0 { // |f| < 2**-20
		if  == 0 {
			if  == 0 {
				return 0
			}
			 += float64() * 
			return float64()* + 
		}
		 =  * (1.0 - 0.66666666666666666*) // avoid division
		if  == 0 {
			return  - 
		}
		return float64()* - (( - (float64()* + )) - )
	}
	 =  / (2.0 + )
	 =  * 
	 =  * ( + *(+*(+*(+*(+*(+*))))))
	if  == 0 {
		return  - ( - *(+))
	}
	return float64()* - (( - (*(+) + (float64()* + ))) - )