Copyright 2011 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.

package math
Floating-point sine and cosine.
The original C code, the long comment, and the constants below were from http://netlib.sandia.gov/cephes/cmath/sin.c, available from http://www.netlib.org/cephes/cmath.tgz. The go code is a simplified version of the original C. sin.c Circular sine SYNOPSIS: double x, y, sin(); y = sin( x ); DESCRIPTION: Range reduction is into intervals of pi/4. The reduction error is nearly eliminated by contriving an extended precision modular arithmetic. Two polynomial approximating functions are employed. Between 0 and pi/4 the sine is approximated by x + x**3 P(x**2). Between pi/4 and pi/2 the cosine is represented as 1 - x**2 Q(x**2). ACCURACY: Relative error: arithmetic domain # trials peak rms DEC 0, 10 150000 3.0e-17 7.8e-18 IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss is not gradual, but jumps suddenly to about 1 part in 10e7. Results may be meaningless for x > 2**49 = 5.6e14. cos.c Circular cosine SYNOPSIS: double x, y, cos(); y = cos( x ); DESCRIPTION: Range reduction is into intervals of pi/4. The reduction error is nearly eliminated by contriving an extended precision modular arithmetic. Two polynomial approximating functions are employed. Between 0 and pi/4 the cosine is approximated by 1 - x**2 Q(x**2). Between pi/4 and pi/2 the sine is represented as x + x**3 P(x**2). ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 DEC 0,+1.07e9 17000 3.0e-17 7.2e-18 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier The readme file at http://netlib.sandia.gov/cephes/ says: Some software in this archive may be from the book _Methods and Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster International, 1989) or from the Cephes Mathematical Library, a commercial product. In either event, it is copyrighted by the author. What you see here may be used freely but it comes with no support or guarantee. The two known misprints in the book are repaired here in the source listings for the gamma function and the incomplete beta integral. Stephen L. Moshier moshier@na-net.ornl.gov
sin coefficients
var _sin = [...]float64{
	1.58962301576546568060e-10, // 0x3de5d8fd1fd19ccd
	-2.50507477628578072866e-8, // 0xbe5ae5e5a9291f5d
	2.75573136213857245213e-6,  // 0x3ec71de3567d48a1
	-1.98412698295895385996e-4, // 0xbf2a01a019bfdf03
	8.33333333332211858878e-3,  // 0x3f8111111110f7d0
	-1.66666666666666307295e-1, // 0xbfc5555555555548
}
cos coefficients
var _cos = [...]float64{
	-1.13585365213876817300e-11, // 0xbda8fa49a0861a9b
	2.08757008419747316778e-9,   // 0x3e21ee9d7b4e3f05
	-2.75573141792967388112e-7,  // 0xbe927e4f7eac4bc6
	2.48015872888517045348e-5,   // 0x3efa01a019c844f5
	-1.38888888888730564116e-3,  // 0xbf56c16c16c14f91
	4.16666666666665929218e-2,   // 0x3fa555555555554b
}
Cos returns the cosine of the radian argument x. Special cases are: Cos(±Inf) = NaN Cos(NaN) = NaN
func ( float64) float64

func ( float64) float64 {
	const (
		 = 7.85398125648498535156e-1  // 0x3fe921fb40000000, Pi/4 split into three parts
		 = 3.77489470793079817668e-8  // 0x3e64442d00000000,
		 = 2.69515142907905952645e-15 // 0x3ce8469898cc5170,
special cases
	switch {
	case IsNaN() || IsInf(, 0):
		return NaN()
	}
make argument positive
	 := false
	 = Abs()

	var  uint64
	var ,  float64
	if  >= reduceThreshold {
		,  = trigReduce()
	} else {
		 = uint64( * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle
		 = float64()           // integer part of x/(Pi/4), as float
map zeros to origin
		if &1 == 1 {
			++
			++
		}
		 &= 7                               // octant modulo 2Pi radians (360 degrees)
		 = (( - *) - *) - * // Extended precision modular arithmetic
	}

	if  > 3 {
		 -= 4
		 = !
	}
	if  > 1 {
		 = !
	}

	 :=  * 
	if  == 1 ||  == 2 {
		 =  + **((((((_sin[0]*)+_sin[1])*+_sin[2])*+_sin[3])*+_sin[4])*+_sin[5])
	} else {
		 = 1.0 - 0.5* + **((((((_cos[0]*)+_cos[1])*+_cos[2])*+_cos[3])*+_cos[4])*+_cos[5])
	}
	if  {
		 = -
	}
	return 
}
Sin returns the sine of the radian argument x. Special cases are: Sin(±0) = ±0 Sin(±Inf) = NaN Sin(NaN) = NaN
func ( float64) float64

func ( float64) float64 {
	const (
		 = 7.85398125648498535156e-1  // 0x3fe921fb40000000, Pi/4 split into three parts
		 = 3.77489470793079817668e-8  // 0x3e64442d00000000,
		 = 2.69515142907905952645e-15 // 0x3ce8469898cc5170,
special cases
	switch {
	case  == 0 || IsNaN():
		return  // return ±0 || NaN()
	case IsInf(, 0):
		return NaN()
	}
make argument positive but save the sign
	 := false
	if  < 0 {
		 = -
		 = true
	}

	var  uint64
	var ,  float64
	if  >= reduceThreshold {
		,  = trigReduce()
	} else {
		 = uint64( * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle
		 = float64()           // integer part of x/(Pi/4), as float
map zeros to origin
		if &1 == 1 {
			++
			++
		}
		 &= 7                               // octant modulo 2Pi radians (360 degrees)
		 = (( - *) - *) - * // Extended precision modular arithmetic
reflect in x axis
	if  > 3 {
		 = !
		 -= 4
	}
	 :=  * 
	if  == 1 ||  == 2 {
		 = 1.0 - 0.5* + **((((((_cos[0]*)+_cos[1])*+_cos[2])*+_cos[3])*+_cos[4])*+_cos[5])
	} else {
		 =  + **((((((_sin[0]*)+_sin[1])*+_sin[2])*+_sin[3])*+_sin[4])*+_sin[5])
	}
	if  {
		 = -
	}
	return