Copyright 2015 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
backtrack is a regular expression search with submatch tracking for small regular expressions and texts. It allocates a bit vector with (length of input) * (length of prog) bits, to make sure it never explores the same (character position, instruction) state multiple times. This limits the search to run in time linear in the length of the test. backtrack is a fast replacement for the NFA code on small regexps when onepass cannot be used.

package regexp

import (
	
	
)
A job is an entry on the backtracker's job stack. It holds the instruction pc and the position in the input.
type job struct {
	pc  uint32
	arg bool
	pos int
}

const (
	visitedBits        = 32
	maxBacktrackProg   = 500        // len(prog.Inst) <= max
	maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
)
bitState holds state for the backtracker.
type bitState struct {
	end      int
	cap      []int
	matchcap []int
	jobs     []job
	visited  []uint32

	inputs inputs
}

var bitStatePool sync.Pool

func () *bitState {
	,  := bitStatePool.Get().(*bitState)
	if ! {
		 = new(bitState)
	}
	return 
}

func ( *bitState) {
	.inputs.clear()
	bitStatePool.Put()
}
maxBitStateLen returns the maximum length of a string to search with the backtracker using prog.
func ( *syntax.Prog) int {
	if !shouldBacktrack() {
		return 0
	}
	return maxBacktrackVector / len(.Inst)
}
shouldBacktrack reports whether the program is too long for the backtracker to run.
func ( *syntax.Prog) bool {
	return len(.Inst) <= maxBacktrackProg
}
reset resets the state of the backtracker. end is the end position in the input. ncap is the number of captures.
func ( *bitState) ( *syntax.Prog,  int,  int) {
	.end = 

	if cap(.jobs) == 0 {
		.jobs = make([]job, 0, 256)
	} else {
		.jobs = .jobs[:0]
	}

	 := (len(.Inst)*(+1) + visitedBits - 1) / visitedBits
	if cap(.visited) <  {
		.visited = make([]uint32, , maxBacktrackVector/visitedBits)
	} else {
		.visited = .visited[:]
		for  := range .visited {
			.visited[] = 0
		}
	}

	if cap(.cap) <  {
		.cap = make([]int, )
	} else {
		.cap = .cap[:]
	}
	for  := range .cap {
		.cap[] = -1
	}

	if cap(.matchcap) <  {
		.matchcap = make([]int, )
	} else {
		.matchcap = .matchcap[:]
	}
	for  := range .matchcap {
		.matchcap[] = -1
	}
}
shouldVisit reports whether the combination of (pc, pos) has not been visited yet.
func ( *bitState) ( uint32,  int) bool {
	 := uint(int()*(.end+1) + )
	if .visited[/visitedBits]&(1<<(&(visitedBits-1))) != 0 {
		return false
	}
	.visited[/visitedBits] |= 1 << ( & (visitedBits - 1))
	return true
}
push pushes (pc, pos, arg) onto the job stack if it should be visited.
Only check shouldVisit when arg is false. When arg is true, we are continuing a previous visit.
	if .prog.Inst[].Op != syntax.InstFail && ( || .shouldVisit(, )) {
		.jobs = append(.jobs, job{pc: , arg: , pos: })
	}
}
tryBacktrack runs a backtracking search starting at pos.
func ( *Regexp) ( *bitState,  input,  uint32,  int) bool {
	 := .longest

	.push(, , , false)
	for len(.jobs) > 0 {
Pop job off the stack.
		 := .jobs[].pc
		 := .jobs[].pos
		 := .jobs[].arg
		.jobs = .jobs[:]
Optimization: rather than push and pop, code that is going to Push and continue the loop simply updates ip, p, and arg and jumps to CheckAndLoop. We have to do the ShouldVisit check that Push would have, but we avoid the stack manipulation.
		goto 
	:
		if !.shouldVisit(, ) {
			continue
		}
	:

		 := .prog.Inst[]

		switch .Op {
		default:
			panic("bad inst")
		case syntax.InstFail:
			panic("unexpected InstFail")
Cannot just b.push(inst.Out, pos, false) b.push(inst.Arg, pos, false) If during the processing of inst.Out, we encounter inst.Arg via another path, we want to process it then. Pushing it here will inhibit that. Instead, re-push inst with arg==true as a reminder to push inst.Arg out later.
Finished inst.Out; try inst.Arg.
				 = false
				 = .Arg
				goto 
			} else {
				.push(, , , true)
				 = .Out
				goto 
			}

One opcode consumes runes; the other leads to match.
			switch .prog.Inst[.Out].Op {
inst.Arg is the match.
				.push(, .Arg, , false)
				 = .Arg
				 = .end
				goto 
inst.Out is the match - non-greedy
			.push(, .Out, .end, false)
			 = .Out
			goto 

		case syntax.InstRune:
			,  := .step()
			if !.MatchRune() {
				continue
			}
			 += 
			 = .Out
			goto 

		case syntax.InstRune1:
			,  := .step()
			if  != .Rune[0] {
				continue
			}
			 += 
			 = .Out
			goto 

		case syntax.InstRuneAnyNotNL:
			,  := .step()
			if  == '\n' ||  == endOfText {
				continue
			}
			 += 
			 = .Out
			goto 

		case syntax.InstRuneAny:
			,  := .step()
			if  == endOfText {
				continue
			}
			 += 
			 = .Out
			goto 

		case syntax.InstCapture:
Finished inst.Out; restore the old value.
				.cap[.Arg] = 
				continue
			} else {
Capture pos to register, but save old value.
					.push(, , .cap[.Arg], true) // come back when we're done.
					.cap[.Arg] = 
				}
				 = .Out
				goto 
			}

		case syntax.InstEmptyWidth:
			 := .context()
			if !.match(syntax.EmptyOp(.Arg)) {
				continue
			}
			 = .Out
			goto 

		case syntax.InstNop:
			 = .Out
			goto 

We found a match. If the caller doesn't care where the match is, no point going further.
			if len(.cap) == 0 {
				return true
			}
Record best match so far. Only need to check end point, because this entire call is only considering one start position.
			if len(.cap) > 1 {
				.cap[1] = 
			}
			if  := .matchcap[1];  == -1 || ( &&  > 0 &&  > ) {
				copy(.matchcap, .cap)
			}
If going for first match, we're done.
			if ! {
				return true
			}
If we used the entire text, no longer match is possible.
			if  == .end {
				return true
			}
Otherwise, continue on in hope of a longer match.
			continue
		}
	}

	return  && len(.matchcap) > 1 && .matchcap[1] >= 0
}
backtrack runs a backtracking search of prog on the input starting at pos.
func ( *Regexp) ( []byte,  string,  int,  int,  []int) []int {
	 := .cond
	if  == ^syntax.EmptyOp(0) { // impossible
		return nil
	}
Anchored match, past beginning of text.
		return nil
	}

	 := newBitState()
	,  := .inputs.init(nil, , )
	.reset(.prog, , )
Anchored search must start at the beginning of the input
	if &syntax.EmptyBeginText != 0 {
		if len(.cap) > 0 {
			.cap[0] = 
		}
		if !.tryBacktrack(, , uint32(.prog.Start), ) {
			freeBitState()
			return nil
		}
	} else {
Unanchored search, starting from each possible text position. Notice that we have to try the empty string at the end of the text, so the loop condition is pos <= end, not pos < end. This looks like it's quadratic in the size of the text, but we are not clearing visited between calls to TrySearch, so no work is duplicated and it ends up still being linear.
		 := -1
		for ;  <=  &&  != 0;  +=  {
Match requires literal prefix; fast search for it.
				 := .index(, )
				if  < 0 {
					freeBitState()
					return nil
				}
				 += 
			}

			if len(.cap) > 0 {
				.cap[0] = 
			}
Match must be leftmost; done.
				goto 
			}
			_,  = .step()
		}
		freeBitState()
		return nil
	}

:
	 = append(, .matchcap...)
	freeBitState()
	return