Copyright 2011 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.

package ssh

import (
	
	
	
	
	
	
	
	
	
	
	

	
	
)

const (
	packetSizeMultiple = 16 // TODO(huin) this should be determined by the cipher.
RFC 4253 section 6.1 defines a minimum packet size of 32768 that implementations MUST be able to process (plus a few more kilobytes for padding and mac). The RFC indicates implementations SHOULD be able to handle larger packet sizes, but then waffles on about reasonable limits. OpenSSH caps their maxPacket at 256kB so we choose to do the same. maxPacket is also used to ensure that uint32 length fields do not overflow, so it should remain well below 4G.
	maxPacket = 256 * 1024
)
noneCipher implements cipher.Stream and provides no encryption. It is used by the transport before the first key-exchange.
type noneCipher struct{}

func ( noneCipher) (,  []byte) {
	copy(, )
}

func (,  []byte) (cipher.Stream, error) {
	,  := aes.NewCipher()
	if  != nil {
		return nil, 
	}
	return cipher.NewCTR(, ), nil
}

func (,  []byte) (cipher.Stream, error) {
	return rc4.NewCipher()
}

type cipherMode struct {
	keySize int
	ivSize  int
	create  func(key, iv []byte, macKey []byte, algs directionAlgorithms) (packetCipher, error)
}

func ( int,  func(,  []byte) (cipher.Stream, error)) func(,  []byte,  []byte,  directionAlgorithms) (packetCipher, error) {
	return func(, ,  []byte,  directionAlgorithms) (packetCipher, error) {
		,  := (, )
		if  != nil {
			return nil, 
		}

		var  []byte
		if  > 0 {
			 = make([]byte, 512)
		}

		for  := ;  > 0; {
			 := 
			if  > len() {
				 = len()
			}
			.XORKeyStream([:], [:])
			 -= 
		}

		 := macModes[.MAC].new()
		return &streamPacketCipher{
			mac:       ,
			etm:       macModes[.MAC].etm,
			macResult: make([]byte, .Size()),
			cipher:    ,
		}, nil
	}
}
cipherModes documents properties of supported ciphers. Ciphers not included are not supported and will not be negotiated, even if explicitly requested in ClientConfig.Crypto.Ciphers.
Ciphers from RFC4344, which introduced many CTR-based ciphers. Algorithms are defined in the order specified in the RFC.
	"aes128-ctr": {16, aes.BlockSize, streamCipherMode(0, newAESCTR)},
	"aes192-ctr": {24, aes.BlockSize, streamCipherMode(0, newAESCTR)},
	"aes256-ctr": {32, aes.BlockSize, streamCipherMode(0, newAESCTR)},
Ciphers from RFC4345, which introduces security-improved arcfour ciphers. They are defined in the order specified in the RFC.
	"arcfour128": {16, 0, streamCipherMode(1536, newRC4)},
	"arcfour256": {32, 0, streamCipherMode(1536, newRC4)},
Cipher defined in RFC 4253, which describes SSH Transport Layer Protocol. Note that this cipher is not safe, as stated in RFC 4253: "Arcfour (and RC4) has problems with weak keys, and should be used with caution." RFC4345 introduces improved versions of Arcfour.
	"arcfour": {16, 0, streamCipherMode(0, newRC4)},
AEAD ciphers
CBC mode is insecure and so is not included in the default config. (See https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf). If absolutely needed, it's possible to specify a custom Config to enable it. You should expect that an active attacker can recover plaintext if you do.
3des-cbc is insecure and is not included in the default config.
prefixLen is the length of the packet prefix that contains the packet length and number of padding bytes.
const prefixLen = 5
streamPacketCipher is a packetCipher using a stream cipher.
The following members are to avoid per-packet allocations.
readCipherPacket reads and decrypt a single packet from the reader argument.
func ( *streamPacketCipher) ( uint32,  io.Reader) ([]byte, error) {
	if ,  := io.ReadFull(, .prefix[:]);  != nil {
		return nil, 
	}

	var  [1]byte
	if .mac != nil && .etm {
		copy([:], .prefix[4:5])
		.cipher.XORKeyStream(.prefix[4:5], .prefix[4:5])
	} else {
		.cipher.XORKeyStream(.prefix[:], .prefix[:])
	}

	 := binary.BigEndian.Uint32(.prefix[0:4])
	 := uint32(.prefix[4])

	var  uint32
	if .mac != nil {
		.mac.Reset()
		binary.BigEndian.PutUint32(.seqNumBytes[:], )
		.mac.Write(.seqNumBytes[:])
		if .etm {
			.mac.Write(.prefix[:4])
			.mac.Write([:])
		} else {
			.mac.Write(.prefix[:])
		}
		 = uint32(.mac.Size())
	}

	if  <= +1 {
		return nil, errors.New("ssh: invalid packet length, packet too small")
	}

	if  > maxPacket {
		return nil, errors.New("ssh: invalid packet length, packet too large")
	}
the maxPacket check above ensures that length-1+macSize does not overflow.
	if uint32(cap(.packetData)) < -1+ {
		.packetData = make([]byte, -1+)
	} else {
		.packetData = .packetData[:-1+]
	}

	if ,  := io.ReadFull(, .packetData);  != nil {
		return nil, 
	}
	 := .packetData[-1:]
	 := .packetData[:-1]

	if .mac != nil && .etm {
		.mac.Write()
	}

	.cipher.XORKeyStream(, )

	if .mac != nil {
		if !.etm {
			.mac.Write()
		}
		.macResult = .mac.Sum(.macResult[:0])
		if subtle.ConstantTimeCompare(.macResult, ) != 1 {
			return nil, errors.New("ssh: MAC failure")
		}
	}

	return .packetData[:--1], nil
}
writeCipherPacket encrypts and sends a packet of data to the writer argument
func ( *streamPacketCipher) ( uint32,  io.Writer,  io.Reader,  []byte) error {
	if len() > maxPacket {
		return errors.New("ssh: packet too large")
	}

	 := 0
packet length is not encrypted for EtM modes
		 = 4
	}

	 := packetSizeMultiple - (prefixLen+len()-)%packetSizeMultiple
	if  < 4 {
		 += packetSizeMultiple
	}

	 := len() + 1 + 
	binary.BigEndian.PutUint32(.prefix[:], uint32())
	.prefix[4] = byte()
	 := .padding[:]
	if ,  := io.ReadFull(, );  != nil {
		return 
	}

	if .mac != nil {
		.mac.Reset()
		binary.BigEndian.PutUint32(.seqNumBytes[:], )
		.mac.Write(.seqNumBytes[:])

For EtM algorithms, the packet length must stay unencrypted, but the following data (padding length) must be encrypted
			.cipher.XORKeyStream(.prefix[4:5], .prefix[4:5])
		}

		.mac.Write(.prefix[:])

For non-EtM algorithms, the algorithm is applied on unencrypted data
			.mac.Write()
			.mac.Write()
		}
	}

For EtM algorithms, the padding length has already been encrypted and the packet length must remain unencrypted
		.cipher.XORKeyStream(.prefix[:], .prefix[:])
	}

	.cipher.XORKeyStream(, )
	.cipher.XORKeyStream(, )

For EtM algorithms, packet and padding must be encrypted
		.mac.Write()
		.mac.Write()
	}

	if ,  := .Write(.prefix[:]);  != nil {
		return 
	}
	if ,  := .Write();  != nil {
		return 
	}
	if ,  := .Write();  != nil {
		return 
	}

	if .mac != nil {
		.macResult = .mac.Sum(.macResult[:0])
		if ,  := .Write(.macResult);  != nil {
			return 
		}
	}

	return nil
}

type gcmCipher struct {
	aead   cipher.AEAD
	prefix [4]byte
	iv     []byte
	buf    []byte
}

func (, ,  []byte,  directionAlgorithms) (packetCipher, error) {
	,  := aes.NewCipher()
	if  != nil {
		return nil, 
	}

	,  := cipher.NewGCM()
	if  != nil {
		return nil, 
	}

	return &gcmCipher{
		aead: ,
		iv:   ,
	}, nil
}

const gcmTagSize = 16

Pad out to multiple of 16 bytes. This is different from the stream cipher because that encrypts the length too.
	 := byte(packetSizeMultiple - (1+len())%packetSizeMultiple)
	if  < 4 {
		 += packetSizeMultiple
	}

	 := uint32(len() + int() + 1)
	binary.BigEndian.PutUint32(.prefix[:], )
	if ,  := .Write(.prefix[:]);  != nil {
		return 
	}

	if cap(.buf) < int() {
		.buf = make([]byte, )
	} else {
		.buf = .buf[:]
	}

	.buf[0] = 
	copy(.buf[1:], )
	if ,  := io.ReadFull(, .buf[1+len():]);  != nil {
		return 
	}
	.buf = .aead.Seal(.buf[:0], .iv, .buf, .prefix[:])
	if ,  := .Write(.buf);  != nil {
		return 
	}
	.incIV()

	return nil
}

func ( *gcmCipher) () {
	for  := 4 + 7;  >= 4; -- {
		.iv[]++
		if .iv[] != 0 {
			break
		}
	}
}

func ( *gcmCipher) ( uint32,  io.Reader) ([]byte, error) {
	if ,  := io.ReadFull(, .prefix[:]);  != nil {
		return nil, 
	}
	 := binary.BigEndian.Uint32(.prefix[:])
	if  > maxPacket {
		return nil, errors.New("ssh: max packet length exceeded")
	}

	if cap(.buf) < int(+gcmTagSize) {
		.buf = make([]byte, +gcmTagSize)
	} else {
		.buf = .buf[:+gcmTagSize]
	}

	if ,  := io.ReadFull(, .buf);  != nil {
		return nil, 
	}

	,  := .aead.Open(.buf[:0], .iv, .buf, .prefix[:])
	if  != nil {
		return nil, 
	}
	.incIV()

	 := [0]
padding is a byte, so it automatically satisfies the maximum size, which is 255.
		return nil, fmt.Errorf("ssh: illegal padding %d", )
	}

	if int(+1) >= len() {
		return nil, fmt.Errorf("ssh: padding %d too large", )
	}
	 = [1 : -uint32()]
	return , nil
}
cbcCipher implements aes128-cbc cipher defined in RFC 4253 section 6.1
The following members are to avoid per-packet allocations.
Amount of data we should still read to hide which verification error triggered.
	oracleCamouflage uint32
}

func ( cipher.Block, , ,  []byte,  directionAlgorithms) (packetCipher, error) {
	 := &cbcCipher{
		mac:        macModes[.MAC].new(),
		decrypter:  cipher.NewCBCDecrypter(, ),
		encrypter:  cipher.NewCBCEncrypter(, ),
		packetData: make([]byte, 1024),
	}
	if .mac != nil {
		.macSize = uint32(.mac.Size())
	}

	return , nil
}

func (, ,  []byte,  directionAlgorithms) (packetCipher, error) {
	,  := aes.NewCipher()
	if  != nil {
		return nil, 
	}

	,  := newCBCCipher(, , , , )
	if  != nil {
		return nil, 
	}

	return , nil
}

func (, ,  []byte,  directionAlgorithms) (packetCipher, error) {
	,  := des.NewTripleDESCipher()
	if  != nil {
		return nil, 
	}

	,  := newCBCCipher(, , , , )
	if  != nil {
		return nil, 
	}

	return , nil
}

func (,  int) uint32 {
	if  >  {
		return uint32()
	}
	return uint32()
}

const (
	cbcMinPacketSizeMultiple = 8
	cbcMinPacketSize         = 16
	cbcMinPaddingSize        = 4
)
cbcError represents a verification error that may leak information.
type cbcError string

func ( cbcError) () string { return string() }

func ( *cbcCipher) ( uint32,  io.Reader) ([]byte, error) {
	,  := .readCipherPacketLeaky(, )
	if  != nil {
Verification error: read a fixed amount of data, to make distinguishing between failing MAC and failing length check more difficult.
			io.CopyN(ioutil.Discard, , int64(.oracleCamouflage))
		}
	}
	return , 
}

func ( *cbcCipher) ( uint32,  io.Reader) ([]byte, error) {
	 := .decrypter.BlockSize()
Read the header, which will include some of the subsequent data in the case of block ciphers - this is copied back to the payload later. How many bytes of payload/padding will be read with this first read.
	 := uint32((prefixLen +  - 1) /  * )
	 := .packetData[:]
	if ,  := io.ReadFull(, );  != nil {
		return nil, 
	}

	.oracleCamouflage = maxPacket + 4 + .macSize - 

	.decrypter.CryptBlocks(, )
	 := binary.BigEndian.Uint32([:4])
	if  > maxPacket {
		return nil, cbcError("ssh: packet too large")
	}
The minimum size of a packet is 16 (or the cipher block size, whichever is larger) bytes.
		return nil, cbcError("ssh: packet too small")
The length of the packet (including the length field but not the MAC) must be a multiple of the block size or 8, whichever is larger.
	if (+4)%maxUInt32(cbcMinPacketSizeMultiple, ) != 0 {
		return nil, cbcError("ssh: invalid packet length multiple")
	}

	 := uint32([4])
	if  < cbcMinPaddingSize ||  <= +1 {
		return nil, cbcError("ssh: invalid packet length")
	}
Positions within the c.packetData buffer:
	 := 4 + 
	 :=  - 
Entire packet size, starting before length, ending at end of mac.
	 :=  + .macSize
Ensure c.packetData is large enough for the entire packet data.
Still need to upsize and copy, but this should be rare at runtime, only on upsizing the packetData buffer.
		.packetData = make([]byte, )
		copy(.packetData, )
	} else {
		.packetData = .packetData[:]
	}

	,  := io.ReadFull(, .packetData[:])
	if  != nil {
		return nil, 
	}
	.oracleCamouflage -= uint32()

	 := .packetData[:]
	.decrypter.CryptBlocks(, )

	 := .packetData[:]
	if .mac != nil {
		.mac.Reset()
		binary.BigEndian.PutUint32(.seqNumBytes[:], )
		.mac.Write(.seqNumBytes[:])
		.mac.Write(.packetData[:])
		.macResult = .mac.Sum(.macResult[:0])
		if subtle.ConstantTimeCompare(.macResult, ) != 1 {
			return nil, cbcError("ssh: MAC failure")
		}
	}

	return .packetData[prefixLen:], nil
}

func ( *cbcCipher) ( uint32,  io.Writer,  io.Reader,  []byte) error {
	 := maxUInt32(cbcMinPacketSizeMultiple, .encrypter.BlockSize())
Length of encrypted portion of the packet (header, payload, padding). Enforce minimum padding and packet size.
Enforce block size.
	 = ( +  - 1) /  * 

	 :=  - 4
	 := int() - (1 + len())
Overall buffer contains: header, payload, padding, mac. Space for the MAC is reserved in the capacity but not the slice length.
	 :=  + .macSize
	if uint32(cap(.packetData)) <  {
		.packetData = make([]byte, , )
	} else {
		.packetData = .packetData[:]
	}

	 := .packetData
Packet header.
	binary.BigEndian.PutUint32(, )
	 = [4:]
	[0] = byte()
Payload.
	 = [1:]
	copy(, )
Padding.
	 = [len():]
	if ,  := io.ReadFull(, );  != nil {
		return 
	}

	if .mac != nil {
		.mac.Reset()
		binary.BigEndian.PutUint32(.seqNumBytes[:], )
		.mac.Write(.seqNumBytes[:])
The MAC is now appended into the capacity reserved for it earlier.
		.packetData = .mac.Sum(.packetData)
	}

	.encrypter.CryptBlocks(.packetData[:], .packetData[:])

	if ,  := .Write(.packetData);  != nil {
		return 
	}

	return nil
}

const chacha20Poly1305ID = "chacha20-poly1305@openssh.com"
chacha20Poly1305Cipher implements the chacha20-poly1305@openssh.com AEAD, which is described here: https://tools.ietf.org/html/draft-josefsson-ssh-chacha20-poly1305-openssh-00 the methods here also implement padding, which RFC4253 Section 6 also requires of stream ciphers.
type chacha20Poly1305Cipher struct {
	lengthKey  [32]byte
	contentKey [32]byte
	buf        []byte
}

func (, ,  []byte,  directionAlgorithms) (packetCipher, error) {
	if len() != 64 {
		panic(len())
	}

	 := &chacha20Poly1305Cipher{
		buf: make([]byte, 256),
	}

	copy(.contentKey[:], [:32])
	copy(.lengthKey[:], [32:])
	return , nil
}

func ( *chacha20Poly1305Cipher) ( uint32,  io.Reader) ([]byte, error) {
	 := make([]byte, 12)
	binary.BigEndian.PutUint32([8:], )
	,  := chacha20.NewUnauthenticatedCipher(.contentKey[:], )
	if  != nil {
		return nil, 
	}
	var ,  [32]byte
	.XORKeyStream([:], [:])
	.XORKeyStream([:], [:]) // skip the next 32 bytes

	 := .buf[:4]
	if ,  := io.ReadFull(, );  != nil {
		return nil, 
	}

	var  [4]byte
	,  := chacha20.NewUnauthenticatedCipher(.lengthKey[:], )
	if  != nil {
		return nil, 
	}
	.XORKeyStream([:], )

	 := binary.BigEndian.Uint32([:])
	if  > maxPacket {
		return nil, errors.New("ssh: invalid packet length, packet too large")
	}

	 := 4 + 
	 :=  + poly1305.TagSize
	if uint32(cap(.buf)) <  {
		.buf = make([]byte, )
		copy(.buf[:], )
	} else {
		.buf = .buf[:]
	}

	if ,  := io.ReadFull(, .buf[4:]);  != nil {
		return nil, 
	}

	var  [poly1305.TagSize]byte
	copy([:], .buf[:])
	if !poly1305.Verify(&, .buf[:], &) {
		return nil, errors.New("ssh: MAC failure")
	}

	 := .buf[4:]
	.XORKeyStream(, )

	 := [0]
padding is a byte, so it automatically satisfies the maximum size, which is 255.
		return nil, fmt.Errorf("ssh: illegal padding %d", )
	}

	if int()+1 >= len() {
		return nil, fmt.Errorf("ssh: padding %d too large", )
	}

	 = [1 : len()-int()]

	return , nil
}

func ( *chacha20Poly1305Cipher) ( uint32,  io.Writer,  io.Reader,  []byte) error {
	 := make([]byte, 12)
	binary.BigEndian.PutUint32([8:], )
	,  := chacha20.NewUnauthenticatedCipher(.contentKey[:], )
	if  != nil {
		return 
	}
	var ,  [32]byte
	.XORKeyStream([:], [:])
	.XORKeyStream([:], [:]) // skip the next 32 bytes
There is no blocksize, so fall back to multiple of 8 byte padding, as described in RFC 4253, Sec 6.
	const  = 8

	 :=  - (1+len())%
	if  < 4 {
		 += 
	}
size (4 bytes), padding (1), payload, padding, tag.
	 := 4 + 1 + len() +  + poly1305.TagSize
	if cap(.buf) <  {
		.buf = make([]byte, )
	} else {
		.buf = .buf[:]
	}

	binary.BigEndian.PutUint32(.buf, uint32(1+len()+))
	,  := chacha20.NewUnauthenticatedCipher(.lengthKey[:], )
	if  != nil {
		return 
	}
	.XORKeyStream(.buf, .buf[:4])
	.buf[4] = byte()
	copy(.buf[5:], )
	 := 5 + len() + 
	if ,  := io.ReadFull(, .buf[5+len():]);  != nil {
		return 
	}

	.XORKeyStream(.buf[4:], .buf[4:])

	var  [poly1305.TagSize]byte
	poly1305.Sum(&, .buf[:], &)

	copy(.buf[:], [:])

	if ,  := .Write(.buf);  != nil {
		return 
	}
	return nil