Copyright 2015 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
This file implements multi-precision decimal numbers. The implementation is for float to decimal conversion only; not general purpose use. The only operations are precise conversion from binary to decimal and rounding. The key observation and some code (shr) is borrowed from strconv/decimal.go: conversion of binary fractional values can be done precisely in multi-precision decimal because 2 divides 10 (required for >> of mantissa); but conversion of decimal floating-point values cannot be done precisely in binary representation. In contrast to strconv/decimal.go, only right shift is implemented in decimal format - left shift can be done precisely in binary format.

package big
A decimal represents an unsigned floating-point number in decimal representation. The value of a non-zero decimal d is d.mant * 10**d.exp with 0.1 <= d.mant < 1, with the most-significant mantissa digit at index 0. For the zero decimal, the mantissa length and exponent are 0. The zero value for decimal represents a ready-to-use 0.0.
type decimal struct {
	mant []byte // mantissa ASCII digits, big-endian
	exp  int    // exponent
}
at returns the i'th mantissa digit, starting with the most significant digit at 0.
func ( *decimal) ( int) byte {
	if 0 <=  &&  < len(.mant) {
		return .mant[]
	}
	return '0'
}
Maximum shift amount that can be done in one pass without overflow. A Word has _W bits and (1<<maxShift - 1)*10 + 9 must fit into Word.
const maxShift = _W - 4
TODO(gri) Since we know the desired decimal precision when converting a floating-point number, we may be able to limit the number of decimal digits that need to be computed by init by providing an additional precision argument and keeping track of when a number was truncated early (equivalent of "sticky bit" in binary rounding).
TODO(gri) Along the same lines, enforce some limit to shift magnitudes to avoid "infinitely" long running conversions (until we run out of space).
Init initializes x to the decimal representation of m << shift (for shift >= 0), or m >> -shift (for shift < 0).
special case 0
	if len() == 0 {
		.mant = .mant[:0]
		.exp = 0
		return
	}
Optimization: If we need to shift right, first remove any trailing zero bits from m to reduce shift amount that needs to be done in decimal format (since that is likely slower).
	if  < 0 {
		 := .trailingZeroBits()
		 := uint(-)
		if  >=  {
			 =  // shift at most ntz bits
		}
		 = nat(nil).shr(, )
		 += int()
	}
Do any shift left in binary representation.
	if  > 0 {
		 = nat(nil).shl(, uint())
		 = 0
	}
Convert mantissa into decimal representation.
	 := .utoa(10)
	 := len()
Trim trailing zeros; instead the exponent is tracking the decimal point independent of the number of digits.
	for  > 0 && [-1] == '0' {
		--
	}
	.mant = append(.mant[:0], [:]...)
Do any (remaining) shift right in decimal representation.
	if  < 0 {
		for  < -maxShift {
			shr(, maxShift)
			 += maxShift
		}
		shr(, uint(-))
	}
}
shr implements x >> s, for s <= maxShift.
Division by 1<<s using shift-and-subtract algorithm.
pick up enough leading digits to cover first shift
	 := 0 // read index
	var  Word
	for >> == 0 &&  < len(.mant) {
		 := Word(.mant[])
		++
		 = *10 +  - '0'
	}
x == 0; shouldn't get here, but handle anyway
		.mant = .mant[:0]
		return
	}
	for >> == 0 {
		++
		 *= 10
	}
	.exp += 1 - 
read a digit, write a digit
	 := 0 // write index
	 := Word(1)<< - 1
	for  < len(.mant) {
		 := Word(.mant[])
		++
		 :=  >> 
		 &=  // n -= d << s
		.mant[] = byte( + '0')
		++
		 = *10 +  - '0'
	}
write extra digits that still fit
	for  > 0 &&  < len(.mant) {
		 :=  >> 
		 &= 
		.mant[] = byte( + '0')
		++
		 =  * 10
	}
	.mant = .mant[:] // the number may be shorter (e.g. 1024 >> 10)
append additional digits that didn't fit
	for  > 0 {
		 :=  >> 
		 &= 
		.mant = append(.mant, byte(+'0'))
		 =  * 10
	}

	trim()
}

func ( *decimal) () string {
	if len(.mant) == 0 {
		return "0"
	}

	var  []byte
	switch {
0.00ddd
		 = make([]byte, 0, 2+(-.exp)+len(.mant))
		 = append(, "0."...)
		 = appendZeros(, -.exp)
		 = append(, .mant...)

dd.ddd
		 = make([]byte, 0, 1+len(.mant))
		 = append(, .mant[:.exp]...)
		 = append(, '.')
		 = append(, .mant[.exp:]...)

ddd00
		 = make([]byte, 0, .exp)
		 = append(, .mant...)
		 = appendZeros(, .exp-len(.mant))
	}

	return string()
}
appendZeros appends n 0 digits to buf and returns buf.
func ( []byte,  int) []byte {
	for ;  > 0; -- {
		 = append(, '0')
	}
	return 
}
shouldRoundUp reports if x should be rounded up if shortened to n digits. n must be a valid index for x.mant.
func ( *decimal,  int) bool {
exactly halfway - round to even
		return  > 0 && (.mant[-1]-'0')&1 != 0
not halfway - digit tells all (x.mant has no trailing zeros)
	return .mant[] >= '5'
}
round sets x to (at most) n mantissa digits by rounding it to the nearest even value with n (or fever) mantissa digits. If n < 0, x remains unchanged.
func ( *decimal) ( int) {
	if  < 0 ||  >= len(.mant) {
		return // nothing to do
	}

	if shouldRoundUp(, ) {
		.roundUp()
	} else {
		.roundDown()
	}
}

func ( *decimal) ( int) {
	if  < 0 ||  >= len(.mant) {
		return // nothing to do
0 <= n < len(x.mant)
find first digit < '9'
	for  > 0 && .mant[-1] >= '9' {
		--
	}

all digits are '9's => round up to '1' and update exponent
		.mant[0] = '1' // ok since len(x.mant) > n
		.mant = .mant[:1]
		.exp++
		return
	}
n > 0 && x.mant[n-1] < '9'
	.mant[-1]++
x already trimmed
}

func ( *decimal) ( int) {
	if  < 0 ||  >= len(.mant) {
		return // nothing to do
	}
	.mant = .mant[:]
	trim()
}
trim cuts off any trailing zeros from x's mantissa; they are meaningless for the value of x.
func ( *decimal) {
	 := len(.mant)
	for  > 0 && .mant[-1] == '0' {
		--
	}
	.mant = .mant[:]
	if  == 0 {
		.exp = 0
	}