Copyright 2009 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
This file implements unsigned multi-precision integers (natural numbers). They are the building blocks for the implementation of signed integers, rationals, and floating-point numbers. Caution: This implementation relies on the function "alias" which assumes that (nat) slice capacities are never changed (no 3-operand slice expressions). If that changes, alias needs to be updated for correctness.

package big

import (
	
	
	
	
)
An unsigned integer x of the form x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0] with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n, with the digits x[i] as the slice elements. A number is normalized if the slice contains no leading 0 digits. During arithmetic operations, denormalized values may occur but are always normalized before returning the final result. The normalized representation of 0 is the empty or nil slice (length = 0).
type nat []Word

var (
	natOne  = nat{1}
	natTwo  = nat{2}
	natFive = nat{5}
	natTen  = nat{10}
)

func ( nat) () {
	for  := range  {
		[] = 0
	}
}

func ( nat) () nat {
	 := len()
	for  > 0 && [-1] == 0 {
		--
	}
	return [0:]
}

func ( nat) ( int) nat {
	if  <= cap() {
		return [:] // reuse z
	}
Most nats start small and stay that way; don't over-allocate.
		return make(nat, 1)
Choosing a good value for e has significant performance impact because it increases the chance that a value can be reused.
	const  = 4 // extra capacity
	return make(nat, , +)
}

func ( nat) ( Word) nat {
	if  == 0 {
		return [:0]
	}
	 = .make(1)
	[0] = 
	return 
}

single-word value
	if  := Word(); uint64() ==  {
		return .setWord()
2-word value
	 = .make(2)
	[1] = Word( >> 32)
	[0] = Word()
	return 
}

func ( nat) ( nat) nat {
	 = .make(len())
	copy(, )
	return 
}

func ( nat) (,  nat) nat {
	 := len()
	 := len()

	switch {
	case  < :
		return .(, )
n == 0 because m >= n; result is 0
		return [:0]
result is x
		return .set()
m > 0

	 = .make( + 1)
	 := addVV([0:], , )
	if  >  {
		 = addVW([:], [:], )
	}
	[] = 

	return .norm()
}

func ( nat) (,  nat) nat {
	 := len()
	 := len()

	switch {
	case  < :
		panic("underflow")
n == 0 because m >= n; result is 0
		return [:0]
result is x
		return .set()
m > 0

	 = .make()
	 := subVV([0:], , )
	if  >  {
		 = subVW([:], [:], )
	}
	if  != 0 {
		panic("underflow")
	}

	return .norm()
}

func ( nat) ( nat) ( int) {
	 := len()
	 := len()
	if  !=  ||  == 0 {
		switch {
		case  < :
			 = -1
		case  > :
			 = 1
		}
		return
	}

	 :=  - 1
	for  > 0 && [] == [] {
		--
	}

	switch {
	case [] < []:
		 = -1
	case [] > []:
		 = 1
	}
	return
}

func ( nat) ( nat, ,  Word) nat {
	 := len()
	if  == 0 ||  == 0 {
		return .setWord() // result is r
m > 0

	 = .make( + 1)
	[] = mulAddVWW([0:], , , )

	return .norm()
}
basicMul multiplies x and y and leaves the result in z. The (non-normalized) result is placed in z[0 : len(x) + len(y)].
func (, ,  nat) {
	[0 : len()+len()].clear() // initialize z
	for ,  := range  {
		if  != 0 {
			[len()+] = addMulVVW([:+len()], , )
		}
	}
}
montgomery computes z mod m = x*y*2**(-n*_W) mod m, assuming k = -1/m mod 2**_W. z is used for storing the result which is returned; z must not alias x, y or m. See Gueron, "Efficient Software Implementations of Modular Exponentiation". https://eprint.iacr.org/2011/239.pdf In the terminology of that paper, this is an "Almost Montgomery Multiplication": x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
This code assumes x, y, m are all the same length, n. (required by addMulVVW and the for loop). It also assumes that x, y are already reduced mod m, or else the result will not be properly reduced.
	if len() !=  || len() !=  || len() !=  {
		panic("math/big: mismatched montgomery number lengths")
	}
	 = .make( * 2)
	.clear()
	var  Word
	for  := 0;  < ; ++ {
		 := []
		 := addMulVVW([:+], , )
		 := [] * 
		 := addMulVVW([:+], , )
		 :=  + 
		 :=  + 
		[+] = 
		if  <  ||  <  {
			 = 1
		} else {
			 = 0
		}
	}
	if  != 0 {
		subVV([:], [:], )
	} else {
		copy([:], [:])
	}
	return [:]
}
Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks. Factored out for readability - do not use outside karatsuba.
func (,  nat,  int) {
	if  := addVV([0:], , );  != 0 {
		addVW([:+>>1], [:], )
	}
}
Like karatsubaAdd, but does subtract.
func (,  nat,  int) {
	if  := subVV([0:], , );  != 0 {
		subVW([:+>>1], [:], )
	}
}
Operands that are shorter than karatsubaThreshold are multiplied using "grade school" multiplication; for longer operands the Karatsuba algorithm is used.
var karatsubaThreshold = 40 // computed by calibrate_test.go
karatsuba multiplies x and y and leaves the result in z. Both x and y must have the same length n and n must be a power of 2. The result vector z must have len(z) >= 6*n. The (non-normalized) result is placed in z[0 : 2*n].
func (, ,  nat) {
	 := len()
Switch to basic multiplication if numbers are odd or small. (n is always even if karatsubaThreshold is even, but be conservative)
	if &1 != 0 ||  < karatsubaThreshold ||  < 2 {
		basicMul(, , )
		return
n&1 == 0 && n >= karatsubaThreshold && n >= 2
Karatsuba multiplication is based on the observation that for two numbers x and y with: x = x1*b + x0 y = y1*b + y0 the product x*y can be obtained with 3 products z2, z1, z0 instead of 4: x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0 = z2*b*b + z1*b + z0 with: xd = x1 - x0 yd = y0 - y1 z1 = xd*yd + z2 + z0 = (x1-x0)*(y0 - y1) + z2 + z0 = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0 = x1*y0 - z2 - z0 + x0*y1 + z2 + z0 = x1*y0 + x0*y1
split x, y into "digits"
	 :=  >> 1              // n2 >= 1
	,  := [:], [0:] // x = x1*b + y0
	,  := [:], [0:] // y = y1*b + y0
z is used for the result and temporary storage: 6*n 5*n 4*n 3*n 2*n 1*n 0*n z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ] For each recursive call of karatsuba, an unused slice of z is passed in that has (at least) half the length of the caller's z.
compute z0 and z2 with the result "in place" in z
	(, , )     // z0 = x0*y0
	([:], , ) // z2 = x1*y1
compute xd (or the negative value if underflow occurs)
	 := 1 // sign of product xd*yd
	 := [2* : 2*+]
	if subVV(, , ) != 0 { // x1-x0
		 = -
		subVV(, , ) // x0-x1
	}
compute yd (or the negative value if underflow occurs)
	 := [2*+ : 3*]
	if subVV(, , ) != 0 { // y0-y1
		 = -
		subVV(, , ) // y1-y0
	}
p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0 p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
	 := [*3:]
	(, , )
save original z2:z0 (ok to use upper half of z since we're done recursing)
	 := [*4:]
	copy(, [:*2])
add up all partial products 2*n n 0 z = [ z2 | z0 ] + [ z0 ] + [ z2 ] + [ p ]
	karatsubaAdd([:], , )
	karatsubaAdd([:], [:], )
	if  > 0 {
		karatsubaAdd([:], , )
	} else {
		karatsubaSub([:], , )
	}
}
alias reports whether x and y share the same base array. Note: alias assumes that the capacity of underlying arrays is never changed for nat values; i.e. that there are no 3-operand slice expressions in this code (or worse, reflect-based operations to the same effect).
func (,  nat) bool {
	return cap() > 0 && cap() > 0 && &[0:cap()][cap()-1] == &[0:cap()][cap()-1]
}
addAt implements z += x<<(_W*i); z must be long enough. (we don't use nat.add because we need z to stay the same slice, and we don't need to normalize z after each addition)
func (,  nat,  int) {
	if  := len();  > 0 {
		if  := addVV([:+], [:], );  != 0 {
			 :=  + 
			if  < len() {
				addVW([:], [:], )
			}
		}
	}
}

func (,  int) int {
	if  >  {
		return 
	}
	return 
}
karatsubaLen computes an approximation to the maximum k <= n such that k = p<<i for a number p <= threshold and an i >= 0. Thus, the result is the largest number that can be divided repeatedly by 2 before becoming about the value of threshold.
func (,  int) int {
	 := uint(0)
	for  >  {
		 >>= 1
		++
	}
	return  << 
}

func ( nat) (,  nat) nat {
	 := len()
	 := len()

	switch {
	case  < :
		return .(, )
	case  == 0 ||  == 0:
		return [:0]
	case  == 1:
		return .mulAddWW(, [0], 0)
m >= n > 1
determine if z can be reused
	if alias(, ) || alias(, ) {
		 = nil // z is an alias for x or y - cannot reuse
	}
use basic multiplication if the numbers are small
	if  < karatsubaThreshold {
		 = .make( + )
		basicMul(, , )
		return .norm()
m >= n && n >= karatsubaThreshold && n >= 2
determine Karatsuba length k such that x = xh*b + x0 (0 <= x0 < b) y = yh*b + y0 (0 <= y0 < b) b = 1<<(_W*k) ("base" of digits xi, yi)
k <= n
multiply x0 and y0 via Karatsuba
	 := [0:]              // x0 is not normalized
	 := [0:]              // y0 is not normalized
	 = .make(max(6*, +)) // enough space for karatsuba of x0*y0 and full result of x*y
	karatsuba(, , )
	 = [0 : +]  // z has final length but may be incomplete
	[2*:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
If xh != 0 or yh != 0, add the missing terms to z. For xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b) yh = y1*b (0 <= y1 < b) the missing terms are x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0 since all the yi for i > 1 are 0 by choice of k: If any of them were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would be a larger valid threshold contradicting the assumption about k.
	if  <  ||  !=  {
		 := getNat(3 * )
		 := *
add x0*y1*b
		 := .norm()
		 := [:]       // y1 is normalized because y is
		 = .(, ) // update t so we don't lose t's underlying array
		addAt(, , )
add xi*y0<<i, xi*y1*b<<(i+k)
		 := .norm()
		for  := ;  < len();  +=  {
			 := [:]
			if len() >  {
				 = [:]
			}
			 = .norm()
			 = .(, )
			addAt(, , )
			 = .(, )
			addAt(, , +)
		}

		putNat()
	}

	return .norm()
}
basicSqr sets z = x*x and is asymptotically faster than basicMul by about a factor of 2, but slower for small arguments due to overhead. Requirements: len(x) > 0, len(z) == 2*len(x) The (non-normalized) result is placed in z.
func (,  nat) {
	 := len()
	 := getNat(2 * )
	 := * // temporary variable to hold the products
	.clear()
	[1], [0] = mulWW([0], [0]) // the initial square
	for  := 1;  < ; ++ {
z collects the squares x[i] * x[i]
t collects the products x[i] * x[j] where j < i
		[2*] = addMulVVW([:2*], [0:], )
	}
	[2*-1] = shlVU([1:2*-1], [1:2*-1], 1) // double the j < i products
	addVV(, , )                              // combine the result
	putNat()
}
karatsubaSqr squares x and leaves the result in z. len(x) must be a power of 2 and len(z) >= 6*len(x). The (non-normalized) result is placed in z[0 : 2*len(x)]. The algorithm and the layout of z are the same as for karatsuba.
func (,  nat) {
	 := len()

	if &1 != 0 ||  < karatsubaSqrThreshold ||  < 2 {
		basicSqr([:2*], )
		return
	}

	 :=  >> 1
	,  := [:], [0:]

	(, )
	([:], )
s = sign(xd*yd) == -1 for xd != 0; s == 1 for xd == 0
	 := [2* : 2*+]
	if subVV(, , ) != 0 {
		subVV(, , )
	}

	 := [*3:]
	(, )

	 := [*4:]
	copy(, [:*2])

	karatsubaAdd([:], , )
	karatsubaAdd([:], [:], )
	karatsubaSub([:], , ) // s == -1 for p != 0; s == 1 for p == 0
}
Operands that are shorter than basicSqrThreshold are squared using "grade school" multiplication; for operands longer than karatsubaSqrThreshold we use the Karatsuba algorithm optimized for x == y.
var basicSqrThreshold = 20      // computed by calibrate_test.go
var karatsubaSqrThreshold = 260 // computed by calibrate_test.go
z = x*x
func ( nat) ( nat) nat {
	 := len()
	switch {
	case  == 0:
		return [:0]
	case  == 1:
		 := [0]
		 = .make(2)
		[1], [0] = mulWW(, )
		return .norm()
	}

	if alias(, ) {
		 = nil // z is an alias for x - cannot reuse
	}

	if  < basicSqrThreshold {
		 = .make(2 * )
		basicMul(, , )
		return .norm()
	}
	if  < karatsubaSqrThreshold {
		 = .make(2 * )
		basicSqr(, )
		return .norm()
	}
Use Karatsuba multiplication optimized for x == y. The algorithm and layout of z are the same as for mul.
z = (x1*b + x0)^2 = x1^2*b^2 + 2*x1*x0*b + x0^2

	 := karatsubaLen(, karatsubaSqrThreshold)

	 := [0:]
	 = .make(max(6*, 2*))
	karatsubaSqr(, ) // z = x0^2
	 = [0 : 2*]
	[2*:].clear()

	if  <  {
		 := getNat(2 * )
		 := *
		 := .norm()
		 := [:]
		 = .mul(, )
		addAt(, , )
		addAt(, , ) // z = 2*x1*x0*b + x0^2
		 = .()
		addAt(, , 2*) // z = x1^2*b^2 + 2*x1*x0*b + x0^2
		putNat()
	}

	return .norm()
}
mulRange computes the product of all the unsigned integers in the range [a, b] inclusively. If a > b (empty range), the result is 1.
func ( nat) (,  uint64) nat {
	switch {
cut long ranges short (optimization)
		return .setUint64(0)
	case  > :
		return .setUint64(1)
	case  == :
		return .setUint64()
	case +1 == :
		return .mul(nat(nil).setUint64(), nat(nil).setUint64())
	}
	 := ( + ) / 2
	return .mul(nat(nil).(, ), nat(nil).(+1, ))
}
q = (x-r)/y, with 0 <= r < y
func ( nat) ( nat,  Word) ( nat,  Word) {
	 := len()
	switch {
	case  == 0:
		panic("division by zero")
	case  == 1:
		 = .set() // result is x
		return
	case  == 0:
		 = [:0] // result is 0
		return
m > 0
	 = .make()
	 = divWVW(, 0, , )
	 = .norm()
	return
}

func ( nat) (, ,  nat) (,  nat) {
	if len() == 0 {
		panic("division by zero")
	}

	if .cmp() < 0 {
		 = [:0]
		 = .set()
		return
	}

	if len() == 1 {
		var  Word
		,  = .divW(, [0])
		 = .setWord()
		return
	}

	,  = .divLarge(, , )
	return
}
getNat returns a *nat of len n. The contents may not be zero. The pool holds *nat to avoid allocation when converting to interface{}.
func ( int) *nat {
	var  *nat
	if  := natPool.Get();  != nil {
		 = .(*nat)
	}
	if  == nil {
		 = new(nat)
	}
	* = .make()
	return 
}

func ( *nat) {
	natPool.Put()
}

var natPool sync.Pool
q = (uIn-r)/vIn, with 0 <= r < vIn Uses z as storage for q, and u as storage for r if possible. See Knuth, Volume 2, section 4.3.1, Algorithm D. Preconditions: len(vIn) >= 2 len(uIn) >= len(vIn) u must not alias z
func ( nat) (, ,  nat) (,  nat) {
	 := len()
	 := len() - 
D1.
do not modify vIn, it may be used by another goroutine simultaneously
	 := getNat()
	 := *
	shlVU(, , )
u may safely alias uIn or vIn, the value of uIn is used to set u and vIn was already used
	 = .make(len() + 1)
	[len()] = shlVU([0:len()], , )
z may safely alias uIn or vIn, both values were used already
	if alias(, ) {
		 = nil // z is an alias for u - cannot reuse
	}
	 = .make( + 1)

	if  < divRecursiveThreshold {
		.divBasic(, )
	} else {
		.divRecursive(, )
	}
	putNat()

	 = .norm()
	shrVU(, , )
	 = .norm()

	return , 
}
divBasic performs word-by-word division of u by v. The quotient is written in pre-allocated q. The remainder overwrites input u. Precondition: - q is large enough to hold the quotient u / v which has a maximum length of len(u)-len(v)+1.
func ( nat) (,  nat) {
	 := len()
	 := len() - 

	 := getNat( + 1)
	 := *
D2.
	 := [-1]
	 := reciprocalWord()
D3.
		 := Word(_M)
		var  Word
		if + < len() {
			 = [+]
		}
		if  !=  {
			var  Word
			,  = divWW(, [+-1], , )
x1 | x2 = q̂v_{n-2}
			 := [-2]
test if q̂v_{n-2} > br̂ + u_{j+n-2}
			 := [+-2]
			for greaterThan(, , , ) {
				--
				 := 
v[n-1] >= 0, so this tests for overflow.
				if  <  {
					break
				}
				,  = mulWW(, )
			}
		}
D4. Compute the remainder u - (q̂*v) << (_W*j). The subtraction may overflow if q̂ estimate was off by one.
		[] = mulAddVWW([0:], , , 0)
		 := len()
		if + > len() && [] == 0 {
			--
		}
		 := subVV([:+], [:], )
		if  != 0 {
If n == qhl, the carry from subVV and the carry from addVV cancel out and don't affect u[j+n].
			if  <  {
				[+] += 
			}
			--
		}

		if  ==  &&  == len() &&  == 0 {
			continue
		}
		[] = 
	}

	putNat()
}

const divRecursiveThreshold = 100
divRecursive performs word-by-word division of u by v. The quotient is written in pre-allocated z. The remainder overwrites input u. Precondition: - len(z) >= len(u)-len(v) See Burnikel, Ziegler, "Fast Recursive Division", Algorithm 1 and 2.
Recursion depth is less than 2 log2(len(v)) Allocate a slice of temporaries to be reused across recursion.
large enough to perform Karatsuba on operands as large as v
	 := getNat(3 * len())
	 := make([]*nat, )
	.clear()
	.divRecursiveStep(, , 0, , )
	for ,  := range  {
		if  != nil {
			putNat()
		}
	}
	putNat()
}
divRecursiveStep computes the division of u by v. - z must be large enough to hold the quotient - the quotient will overwrite z - the remainder will overwrite u
func ( nat) (,  nat,  int,  *nat,  []*nat) {
	 = .norm()
	 = .norm()

	if len() == 0 {
		.clear()
		return
	}
	 := len()
	if  < divRecursiveThreshold {
		.divBasic(, )
		return
	}
	 := len() - 
	if  < 0 {
		return
	}
Produce the quotient by blocks of B words. Division by v (length n) is done using a length n/2 division and a length n/2 multiplication for each block. The final complexity is driven by multiplication complexity.
	 :=  / 2
Allocate a nat for qhat below.
	if [] == nil {
		[] = getNat()
	} else {
		*[] = [].make( + 1)
	}

	 := 
Divide u[j-B:j+n] by vIn. Keep remainder in u for next block. The following property will be used (Lemma 2): if u = u1 << s + u0 v = v1 << s + v0 then floor(u1/v1) >= floor(u/v) Moreover, the difference is at most 2 if len(v1) >= len(u/v) We choose s = B-1 since len(v)-s >= B+1 >= len(u/v)
Except for the first step, the top bits are always a division remainder, so the quotient length is <= n.
		 := [-:]

		 := *[]
		.clear()
		.([:+], [:], +1, , )
Adjust the quotient: u = u_h << s + u_l v = v_h << s + v_l u_h = q̂ v_h + rh u = q̂ (v - v_l) + rh << s + u_l After the above step, u contains a remainder: u = rh << s + u_l and we need to subtract q̂ v_l But it may be a bit too large, in which case q̂ needs to be smaller.
		 := .make(3 * )
		.clear()
		 = .mul(, [:])
		for  := 0;  < 2; ++ {
			 := .cmp(.norm())
			if  <= 0 {
				break
			}
			subVW(, , 1)
			 := subVV([:], [:], [:])
			if len() >  {
				subVW([:], [:], )
			}
			addAt([:], [:], 0)
		}
		if .cmp(.norm()) > 0 {
			panic("impossible")
		}
		 := subVV([:len()], [:len()], )
		if  > 0 {
			subVW([len():], [len():], )
		}
		addAt(, , -)
		 -= 
	}
Now u < (v<<B), compute lower bits in the same way. Choose shift = B-1 again.
	 :=  - 1
	 := *[]
	.clear()
	.([:].norm(), [:], +1, , )
	 = .norm()
	 := .make(3 * )
	.clear()
Set the correct remainder as before.
	for  := 0;  < 2; ++ {
		if  := .cmp(.norm());  > 0 {
			subVW(, , 1)
			 := subVV([:], [:], [:])
			if len() >  {
				subVW([:], [:], )
			}
			addAt([:], [:], 0)
		}
	}
	if .cmp(.norm()) > 0 {
		panic("impossible")
	}
	 := subVV([0:len()], [0:len()], )
	if  > 0 {
		 = subVW([len():], [len():], )
	}
	if  > 0 {
		panic("impossible")
	}
Done!
	addAt(, .norm(), 0)
}
Length of x in bits. x must be normalized.
func ( nat) () int {
	if  := len() - 1;  >= 0 {
		return *_W + bits.Len(uint([]))
	}
	return 0
}
trailingZeroBits returns the number of consecutive least significant zero bits of x.
func ( nat) () uint {
	if len() == 0 {
		return 0
	}
	var  uint
	for [] == 0 {
		++
x[i] != 0
	return *_W + uint(bits.TrailingZeros(uint([])))
}

func (,  nat) bool {
	return len() == len() && len() > 0 && &[0] == &[0]
}
z = x << s
func ( nat) ( nat,  uint) nat {
	if  == 0 {
		if same(, ) {
			return 
		}
		if !alias(, ) {
			return .set()
		}
	}

	 := len()
	if  == 0 {
		return [:0]
m > 0

	 :=  + int(/_W)
	 = .make( + 1)
	[] = shlVU([-:], , %_W)
	[0 : -].clear()

	return .norm()
}
z = x >> s
func ( nat) ( nat,  uint) nat {
	if  == 0 {
		if same(, ) {
			return 
		}
		if !alias(, ) {
			return .set()
		}
	}

	 := len()
	 :=  - int(/_W)
	if  <= 0 {
		return [:0]
n > 0

	 = .make()
	shrVU(, [-:], %_W)

	return .norm()
}

func ( nat) ( nat,  uint,  uint) nat {
	 := int( / _W)
	 := Word(1) << ( % _W)
	 := len()
	switch  {
	case 0:
		 = .make()
		copy(, )
no need to grow
			return 
		}
		[] &^= 
		return .norm()
	case 1:
		if  >=  {
			 = .make( + 1)
			[:].clear()
		} else {
			 = .make()
		}
		copy(, )
no need to normalize
		return 
	}
	panic("set bit is not 0 or 1")
}
bit returns the value of the i'th bit, with lsb == bit 0.
func ( nat) ( uint) uint {
	 :=  / _W
	if  >= uint(len()) {
		return 0
0 <= j < len(x)
	return uint([] >> ( % _W) & 1)
}
sticky returns 1 if there's a 1 bit within the i least significant bits, otherwise it returns 0.
func ( nat) ( uint) uint {
	 :=  / _W
	if  >= uint(len()) {
		if len() == 0 {
			return 0
		}
		return 1
0 <= j < len(x)
	for ,  := range [:] {
		if  != 0 {
			return 1
		}
	}
	if []<<(_W-%_W) != 0 {
		return 1
	}
	return 0
}

func ( nat) (,  nat) nat {
	 := len()
	 := len()
	if  >  {
		 = 
m <= n

	 = .make()
	for  := 0;  < ; ++ {
		[] = [] & []
	}

	return .norm()
}

func ( nat) (,  nat) nat {
	 := len()
	 := len()
	if  >  {
		 = 
m >= n

	 = .make()
	for  := 0;  < ; ++ {
		[] = [] &^ []
	}
	copy([:], [:])

	return .norm()
}

func ( nat) (,  nat) nat {
	 := len()
	 := len()
	 := 
	if  <  {
		,  = , 
		 = 
m >= n

	 = .make()
	for  := 0;  < ; ++ {
		[] = [] | []
	}
	copy([:], [:])

	return .norm()
}

func ( nat) (,  nat) nat {
	 := len()
	 := len()
	 := 
	if  <  {
		,  = , 
		 = 
m >= n

	 = .make()
	for  := 0;  < ; ++ {
		[] = [] ^ []
	}
	copy([:], [:])

	return .norm()
}
greaterThan reports whether (x1<<_W + x2) > (y1<<_W + y2)
func (, , ,  Word) bool {
	return  >  ||  ==  &&  > 
}
modW returns x % d.
TODO(agl): we don't actually need to store the q value.
	var  nat
	 = .make(len())
	return divWVW(, 0, , )
}
random creates a random integer in [0..limit), using the space in z if possible. n is the bit length of limit.
func ( nat) ( *rand.Rand,  nat,  int) nat {
	if alias(, ) {
		 = nil // z is an alias for limit - cannot reuse
	}
	 = .make(len())

	 := uint( % _W)
	if  == 0 {
		 = _W
	}
	 := Word((1 << ) - 1)

	for {
		switch _W {
		case 32:
			for  := range  {
				[] = Word(.Uint32())
			}
		case 64:
			for  := range  {
				[] = Word(.Uint32()) | Word(.Uint32())<<32
			}
		default:
			panic("unknown word size")
		}
		[len()-1] &= 
		if .cmp() < 0 {
			break
		}
	}

	return .norm()
}
If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m; otherwise it sets z to x**y. The result is the value of z.
func ( nat) (, ,  nat) nat {
We cannot allow in-place modification of x or y.
		 = nil
	}
x**y mod 1 == 0
	if len() == 1 && [0] == 1 {
		return .setWord(0)
m == 0 || m > 1
x**0 == 1
	if len() == 0 {
		return .setWord(1)
y > 0
x**1 mod m == x mod m
	if len() == 1 && [0] == 1 && len() != 0 {
		_,  = nat(nil).div(, , )
		return 
y > 1

We likely end up being as long as the modulus.
		 = .make(len())
	}
	 = .set()
If the base is non-trivial and the exponent is large, we use 4-bit, windowed exponentiation. This involves precomputing 14 values (x^2...x^15) but then reduces the number of multiply-reduces by a third. Even for a 32-bit exponent, this reduces the number of operations. Uses Montgomery method for odd moduli.
	if .cmp(natOne) > 0 && len() > 1 && len() > 0 {
		if [0]&1 == 1 {
			return .expNNMontgomery(, , )
		}
		return .expNNWindowed(, , )
	}

	 := [len()-1] // v > 0 because y is normalized and y > 0
	 := nlz() + 1
	 <<= 
	var  nat

	const  = 1 << (_W - 1)
We walk through the bits of the exponent one by one. Each time we see a bit, we square, thus doubling the power. If the bit is a one, we also multiply by x, thus adding one to the power.

zz and r are used to avoid allocating in mul and div as otherwise the arguments would alias.
	var ,  nat
	for  := 0;  < ; ++ {
		 = .sqr()
		,  = , 

		if & != 0 {
			 = .mul(, )
			,  = , 
		}

		if len() != 0 {
			,  = .div(, , )
			, , ,  = , , , 
		}

		 <<= 1
	}

	for  := len() - 2;  >= 0; -- {
		 = []

		for  := 0;  < _W; ++ {
			 = .sqr()
			,  = , 

			if & != 0 {
				 = .mul(, )
				,  = , 
			}

			if len() != 0 {
				,  = .div(, , )
				, , ,  = , , , 
			}

			 <<= 1
		}
	}

	return .norm()
}
expNNWindowed calculates x**y mod m using a fixed, 4-bit window.
zz and r are used to avoid allocating in mul and div as otherwise the arguments would alias.
	var ,  nat

powers[i] contains x^i.
	var  [1 << ]nat
	[0] = natOne
	[1] = 
	for  := 2;  < 1<<;  += 2 {
		, ,  := &[/2], &[], &[+1]
		* = .sqr(*)
		,  = .div(, *, )
		*,  = , *
		* = .mul(*, )
		,  = .div(, *, )
		*,  = , *
	}

	 = .setWord(1)

	for  := len() - 1;  >= 0; -- {
		 := []
		for  := 0;  < _W;  +=  {
Unrolled loop for significant performance gain. Use go test -bench=".*" in crypto/rsa to check performance before making changes.
				 = .sqr()
				,  = , 
				,  = .div(, , )
				,  = , 

				 = .sqr()
				,  = , 
				,  = .div(, , )
				,  = , 

				 = .sqr()
				,  = , 
				,  = .div(, , )
				,  = , 

				 = .sqr()
				,  = , 
				,  = .div(, , )
				,  = , 
			}

			 = .mul(, [>>(_W-)])
			,  = , 
			,  = .div(, , )
			,  = , 

			 <<= 
		}
	}

	return .norm()
}
expNNMontgomery calculates x**y mod m using a fixed, 4-bit window. Uses Montgomery representation.
func ( nat) (, ,  nat) nat {
	 := len()
We want the lengths of x and m to be equal. It is OK if x >= m as long as len(x) == len(m).
	if len() >  {
Note: now len(x) <= numWords, not guaranteed ==.
	}
	if len() <  {
		 := make(nat, )
		copy(, )
		 = 
	}
Ideally the precomputations would be performed outside, and reused k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson Iteration for Multiplicative Inverses Modulo Prime Powers".
	 := 2 - [0]
	 := [0] - 1
	for  := 1;  < _W;  <<= 1 {
		 *= 
		 *= ( + 1)
	}
	 = -
RR = 2**(2*_W*len(m)) mod m
	 := nat(nil).setWord(1)
	 := nat(nil).shl(, uint(2**_W))
	_,  = nat(nil).div(, , )
	if len() <  {
		 = .make()
		copy(, )
		 = 
one = 1, with equal length to that of m
	 := make(nat, )
	[0] = 1

powers[i] contains x^i
	var  [1 << ]nat
	[0] = [0].montgomery(, , , , )
	[1] = [1].montgomery(, , , , )
	for  := 2;  < 1<<; ++ {
		[] = [].montgomery([-1], [1], , , )
	}
initialize z = 1 (Montgomery 1)
	 = .make()
	copy(, [0])

	 = .make()
same windowed exponent, but with Montgomery multiplications
	for  := len() - 1;  >= 0; -- {
		 := []
		for  := 0;  < _W;  +=  {
			if  != len()-1 ||  != 0 {
				 = .montgomery(, , , , )
				 = .montgomery(, , , , )
				 = .montgomery(, , , , )
				 = .montgomery(, , , , )
			}
			 = .montgomery(, [>>(_W-)], , , )
			,  = , 
			 <<= 
		}
convert to regular number
	 = .montgomery(, , , , )
One last reduction, just in case. See golang.org/issue/13907.
Common case is m has high bit set; in that case, since zz is the same length as m, there can be just one multiple of m to remove. Just subtract. We think that the subtract should be sufficient in general, so do that unconditionally, but double-check, in case our beliefs are wrong. The div is not expected to be reached.
		 = .sub(, )
		if .cmp() >= 0 {
			_,  = nat(nil).div(nil, , )
		}
	}

	return .norm()
}
bytes writes the value of z into buf using big-endian encoding. The value of z is encoded in the slice buf[i:]. If the value of z cannot be represented in buf, bytes panics. The number i of unused bytes at the beginning of buf is returned as result.
func ( nat) ( []byte) ( int) {
	 = len()
	for ,  := range  {
		for  := 0;  < _S; ++ {
			--
			if  >= 0 {
				[] = byte()
			} else if byte() != 0 {
				panic("math/big: buffer too small to fit value")
			}
			 >>= 8
		}
	}

	if  < 0 {
		 = 0
	}
	for  < len() && [] == 0 {
		++
	}

	return
}
bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value.
func ( []byte) Word {
	if _W == 64 {
		return Word(binary.BigEndian.Uint64())
	}
	return Word(binary.BigEndian.Uint32())
}
setBytes interprets buf as the bytes of a big-endian unsigned integer, sets z to that value, and returns z.
func ( nat) ( []byte) nat {
	 = .make((len() + _S - 1) / _S)

	 := len()
	for  := 0;  >= _S; ++ {
		[] = bigEndianWord([-_S : ])
		 -= _S
	}
	if  > 0 {
		var  Word
		for  := uint(0);  > 0;  += 8 {
			 |= Word([-1]) << 
			--
		}
		[len()-1] = 
	}

	return .norm()
}
sqrt sets z = ⌊√x⌋
func ( nat) ( nat) nat {
	if .cmp(natOne) <= 0 {
		return .set()
	}
	if alias(, ) {
		 = nil
	}
Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller. See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt). https://members.loria.fr/PZimmermann/mca/pub226.html If x is one less than a perfect square, the sequence oscillates between the correct z and z+1; otherwise it converges to the correct z and stays there.
	var ,  nat
	 = 
	 = .setUint64(1)
	 = .shl(, uint(.bitLen()+1)/2) // must be ≥ √x
	for  := 0; ; ++ {
		, _ = .div(nil, , )
		 = .add(, )
		 = .shr(, 1)
z1 is answer. Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
			if &1 == 0 {
				return 
			}
			return .set()
		}
		,  = , 
	}