math/big.nat.div (method)

33 uses

	math/big (current package)
		float.go#L1361: 	z.mant, r = z.mant.div(nil, xadj, y.mant)
		int.go#L212: 	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
		int.go#L221: 	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
		int.go#L239: 	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
		nat.go#L654: func (z nat) div(z2, u, v nat) (q, r nat) {
		nat.go#L1244: 		_, z = nat(nil).div(z, x, m)
		nat.go#L1292: 			zz, r = zz.div(r, z, m)
		nat.go#L1312: 				zz, r = zz.div(r, z, m)
		nat.go#L1337: 		zz, r = zz.div(r, *p, m)
		nat.go#L1340: 		zz, r = zz.div(r, *p1, m)
		nat.go#L1355: 				zz, r = zz.div(r, z, m)
		nat.go#L1360: 				zz, r = zz.div(r, z, m)
		nat.go#L1365: 				zz, r = zz.div(r, z, m)
		nat.go#L1370: 				zz, r = zz.div(r, z, m)
		nat.go#L1376: 			zz, r = zz.div(r, z, m)
		nat.go#L1394: 		_, x = nat(nil).div(nil, x, m)
		nat.go#L1417: 	_, RR = nat(nil).div(RR, zz, m)
		nat.go#L1472: 			_, zz = nat(nil).div(nil, zz, m)
		nat.go#L1556: 		z2, _ = z2.div(nil, x, z1)
		natconv.go#L391: 			q, r = q.div(r, q, table[index].bbb)
		prime.go#L112: 			quotient, y = quotient.div(y, y, n)
		prime.go#L260: 			t2, vk = t2.div(vk, t1, n)
		prime.go#L264: 			t2, vk1 = t2.div(vk1, t1, n)
		prime.go#L271: 			t2, vk1 = t2.div(vk1, t1, n)
		prime.go#L275: 			t2, vk = t2.div(vk, t1, n)
		prime.go#L297: 		t2, t3 = t2.div(t3, t1, n)
		prime.go#L317: 		t2, vk = t2.div(vk, t1, n)
		rat.go#L124: 	q, r := q.div(a2, a2, b2) // (recycle a2)
		rat.go#L222: 	q, r := q.div(a2, a2, b2) // (recycle a2)
		rat.go#L446: 			z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
		rat.go#L447: 			z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
		ratconv.go#L339: 	q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
		ratconv.go#L347: 	r, r2 := r.div(nat(nil), r, x.b.abs)