Copyright 2010 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.

package math
The original C code, the long comment, and the constants below are from http://netlib.sandia.gov/cephes/cprob/gamma.c. The go code is a simplified version of the original C. tgamma.c Gamma function SYNOPSIS: double x, y, tgamma(); extern int signgam; y = tgamma( x ); DESCRIPTION: Returns gamma function of the argument. The result is correctly signed, and the sign (+1 or -1) is also returned in a global (extern) variable named signgam. This variable is also filled in by the logarithmic gamma function lgamma(). Arguments |x| <= 34 are reduced by recurrence and the function approximated by a rational function of degree 6/7 in the interval (2,3). Large arguments are handled by Stirling's formula. Large negative arguments are made positive using a reflection formula. ACCURACY: Relative error: arithmetic domain # trials peak rms DEC -34, 34 10000 1.3e-16 2.5e-17 IEEE -170,-33 20000 2.3e-15 3.3e-16 IEEE -33, 33 20000 9.4e-16 2.2e-16 IEEE 33, 171.6 20000 2.3e-15 3.2e-16 Error for arguments outside the test range will be larger owing to error amplification by the exponential function. Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier The readme file at http://netlib.sandia.gov/cephes/ says: Some software in this archive may be from the book _Methods and Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster International, 1989) or from the Cephes Mathematical Library, a commercial product. In either event, it is copyrighted by the author. What you see here may be used freely but it comes with no support or guarantee. The two known misprints in the book are repaired here in the source listings for the gamma function and the incomplete beta integral. Stephen L. Moshier moshier@na-net.ornl.gov

var _gamP = [...]float64{
	1.60119522476751861407e-04,
	1.19135147006586384913e-03,
	1.04213797561761569935e-02,
	4.76367800457137231464e-02,
	2.07448227648435975150e-01,
	4.94214826801497100753e-01,
	9.99999999999999996796e-01,
}
var _gamQ = [...]float64{
	-2.31581873324120129819e-05,
	5.39605580493303397842e-04,
	-4.45641913851797240494e-03,
	1.18139785222060435552e-02,
	3.58236398605498653373e-02,
	-2.34591795718243348568e-01,
	7.14304917030273074085e-02,
	1.00000000000000000320e+00,
}
var _gamS = [...]float64{
	7.87311395793093628397e-04,
	-2.29549961613378126380e-04,
	-2.68132617805781232825e-03,
	3.47222221605458667310e-03,
	8.33333333333482257126e-02,
}
Gamma function computed by Stirling's formula. The pair of results must be multiplied together to get the actual answer. The multiplication is left to the caller so that, if careful, the caller can avoid infinity for 172 <= x <= 180. The polynomial is valid for 33 <= x <= 172; larger values are only used in reciprocal and produce denormalized floats. The lower precision there masks any imprecision in the polynomial.
func ( float64) (float64, float64) {
	if  > 200 {
		return Inf(1), 1
	}
	const (
		   = 2.506628274631000502417
		 = 143.01608
	)
	 := 1 / 
	 = 1 + *((((_gamS[0]*+_gamS[1])*+_gamS[2])*+_gamS[3])*+_gamS[4])
	 := Exp()
	 := 1.0
	if  >  { // avoid Pow() overflow
		 := Pow(, 0.5*-0.25)
		,  = , /
	} else {
		 = Pow(, -0.5) / 
	}
	return ,  *  * 
}
Gamma returns the Gamma function of x. Special cases are: Gamma(+Inf) = +Inf Gamma(+0) = +Inf Gamma(-0) = -Inf Gamma(x) = NaN for integer x < 0 Gamma(-Inf) = NaN Gamma(NaN) = NaN
func ( float64) float64 {
special cases
	switch {
	case isNegInt() || IsInf(, -1) || IsNaN():
		return NaN()
	case IsInf(, 1):
		return Inf(1)
	case  == 0:
		if Signbit() {
			return Inf(-1)
		}
		return Inf(1)
	}
	 := Abs()
	 := Floor()
	if  > 33 {
		if  >= 0 {
			,  := stirling()
			return  * 
Note: x is negative but (checked above) not a negative integer, so x must be small enough to be in range for conversion to int64. If |x| were >= 2⁶³ it would have to be an integer.
		 := 1
		if  := int64(); &1 == 0 {
			 = -1
		}
		 :=  - 
		if  > 0.5 {
			 =  + 1
			 =  - 
		}
		 =  * Sin(Pi*)
		if  == 0 {
			return Inf()
		}
		,  := stirling()
		 := Abs()
		 :=  *  * 
		if IsInf(, 0) {
			 = Pi /  /  / 
		} else {
			 = Pi / 
		}
		return float64() * 
	}
Reduce argument
	 := 1.0
	for  >= 3 {
		 =  - 1
		 =  * 
	}
	for  < 0 {
		if  > -1e-09 {
			goto 
		}
		 =  / 
		 =  + 1
	}
	for  < 2 {
		if  < 1e-09 {
			goto 
		}
		 =  / 
		 =  + 1
	}

	if  == 2 {
		return 
	}

	 =  - 2
	 = (((((*_gamP[0]+_gamP[1])*+_gamP[2])*+_gamP[3])*+_gamP[4])*+_gamP[5])* + _gamP[6]
	 = ((((((*_gamQ[0]+_gamQ[1])*+_gamQ[2])*+_gamQ[3])*+_gamQ[4])*+_gamQ[5])*+_gamQ[6])* + _gamQ[7]
	return  *  / 

:
	if  == 0 {
		return Inf(1)
	}
	return  / ((1 + *) * )
}

func ( float64) bool {
	if  < 0 {
		,  := Modf()
		return  == 0
	}
	return false