const math/big._W

76 uses

	math/big (current package)
		arith.go#L19: 	_S = _W / 8 // word size in bytes
		arith.go#L21: 	_W = bits.UintSize // word size in bits
		arith.go#L22: 	_B = 1 << _W       // digit base
		arith.go#L154: 	s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
		arith.go#L155: 	ŝ := _W - s
		arith.go#L156: 	ŝ &= _W - 1 // ditto
		arith.go#L173: 	s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
		arith.go#L174: 	ŝ := _W - s
		arith.go#L175: 	ŝ &= _W - 1 // ditto
		arith.go#L210: 		x1 = x1<<s | x0>>(_W-s)
		decimal.go#L42: const maxShift = _W - 4
		float.go#L219: 	return uint(len(x.mant))*_W - x.mant.trailingZeroBits()
		float.go#L374: 	const msb = 1 << (_W - 1)
		float.go#L405: 	bits := m * _W           // present mantissa bits; bits > 0
		float.go#L435: 	n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision
		float.go#L442: 	ntz := n*_W - z.prec // 0 <= ntz < _W
		float.go#L486: 				const msb = 1 << (_W - 1)
		float.go#L694: 	if debugFloat && x[i]&(1<<(_W-1)) == 0 {
		float.go#L697: 	switch _W {
		float.go#L712: 	if debugFloat && x[i]&(1<<(_W-1)) == 0 {
		float.go#L715: 	switch _W {
		float.go#L870: 			if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
		float.go#L990: 			if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
		float.go#L1095: 		allBits := uint(len(x.mant)) * _W
		float.go#L1142: 		allBits := int32(len(x.mant)) * _W
		float.go#L1221: 	ex := int64(x.exp) - int64(len(x.mant))*_W
		float.go#L1222: 	ey := int64(y.exp) - int64(len(y.mant))*_W
		float.go#L1252: 	z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
		float.go#L1268: 	ex := int64(x.exp) - int64(len(x.mant))*_W
		float.go#L1269: 	ey := int64(y.exp) - int64(len(y.mant))*_W
		float.go#L1305: 	z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
		float.go#L1342: 	n := int(z.prec/_W) + 1
		float.go#L1362: 	e := int64(x.exp) - int64(y.exp) - int64(d-len(z.mant))*_W
		floatconv.go#L85: 	exp2 := int64(len(z.mant))*_W - fnorm(z.mant)
		floatmarsh.go#L30: 		n = int((x.prec + (_W - 1)) / _W) // required mantissa length in words for given precision
		ftoa.go#L330: 	switch w := uint32(len(x.mant)) * _W; {
		ftoa.go#L381: 	switch w := uint(len(x.mant)) * _W; {
		int.go#L365: 	if _W == 32 && len(x) > 1 {
		int.go#L389: 	if len(x.abs) <= 64/_W {
		int.go#L398: 	return !x.neg && len(x.abs) <= 64/_W
		int.go#L581: 	a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h)
		int.go#L585: 		a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h)
		int.go#L587: 		a2 = B.abs[n-2] >> (_W - h)
		nat.go#L969: 		return i*_W + bits.Len(uint(x[i]))
		nat.go#L985: 	return i*_W + uint(bits.TrailingZeros(uint(x[i])))
		nat.go#L1009: 	n := m + int(s/_W)
		nat.go#L1011: 	z[n] = shlVU(z[n-m:n], x, s%_W)
		nat.go#L1029: 	n := m - int(s/_W)
		nat.go#L1036: 	shrVU(z, x[m-n:], s%_W)
		nat.go#L1042: 	j := int(i / _W)
		nat.go#L1043: 	m := Word(1) << (i % _W)
		nat.go#L1072: 	j := i / _W
		nat.go#L1077: 	return uint(x[j] >> (i % _W) & 1)
		nat.go#L1083: 	j := i / _W
		nat.go#L1096: 	if x[j]<<(_W-i%_W) != 0 {
		nat.go#L1194: 	bitLengthOfMSW := uint(n % _W)
		nat.go#L1196: 		bitLengthOfMSW = _W
		nat.go#L1201: 		switch _W {
		nat.go#L1272: 	const mask = 1 << (_W - 1)
		nat.go#L1278: 	w := _W - int(shift)
		nat.go#L1302: 		for j := 0; j < _W; j++ {
		nat.go#L1348: 		for j := 0; j < _W; j += n {
		nat.go#L1374: 			zz = zz.mul(z, powers[yi>>(_W-n)])
		nat.go#L1408: 	for i := 1; i < _W; i <<= 1 {
		nat.go#L1416: 	zz := nat(nil).shl(RR, uint(2*numWords*_W))
		nat.go#L1445: 		for j := 0; j < _W; j += n {
		nat.go#L1452: 			zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords)
		nat.go#L1509: 	if _W == 64 {
		natconv.go#L288: 		nbits := uint(_W) // number of unprocessed bits in w
		natconv.go#L304: 				nbits = _W
		natconv.go#L313: 				nbits = _W - (shift - nbits)
		prime.go#L61: 	switch _W {
		sqrt.go#L126: 	z.mant = z.mant.make(int(prec2/_W) * 2)